首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neither normal human B lymphoblasts (RPMI 6410) transformed by the EB virus nor human peripheral blood lymphocytes (PBL) stimulated by a mitogen replicated well when the methionine (Met) of the medium was replaced with homocysteine (Hcy). Cbl bound to human transcobalamin II (TC II) substantially increased cell division over that observed when the Cbl of the medium was in the free form. Although, as expected, the TC II enhanced the cell entry of Cbl 1000-fold, this was not the basis of the TC II effect. Through adjustment of the respective concentrations of free Cbl and TC II-Cbl in the medium, equal amounts of Cbl entered the cell, yet the TC II effect persisted. TC II-Cbl did not restore cell division in the absence of Met by virus-transformed lymphoblasts from a child with defective Met synthesis from Hcy. The TC II did not act by enhanced induction of the Cbl-dependent methionine synthase activity of cell extracts but the ability of intact cells to produce Met from Hcy by the Cbl-dependent process appeared to have a role in the TC II effect.  相似文献   

3.
Euglena gracilis requires cobalamin (Cbl) as an essential growth factor. Phosphatidylcholine (PC) synthesis was greatly reduced by Cbl deficiency. Rapid cell division occurred after Cbl was replenished, and PC was actively synthesized during the cell divisions. When the deficient cells were given methionine (a precursor for the choline moiety), active synthesis of PC occurred even without the Cbl supplement, although cell division was not induced. As methionine synthase in Euglena requires methylcobalamin as a coenzyme, decrease in methionine synthesis may account for reduced PC synthesis under Cbl-deficient conditions. Phosphatidyleth-anolamine and phosphatidylserine synthesis were also suppressed, commensurate with decrease of PC synthesis, under Cbl deficiency, even though Cbl is not thought to participate in their synthesis. In contrast, a lot of triglyceride and wax ester accumulated in Cbl-deficient cells. Moreover, Cbl depletion altered fatty acid composition, notably due to increased proportion of odd-numbered fatty acids  相似文献   

4.
Hepatocyte growth factor/scatter factor (HGF) and its receptor tyrosine kinase Met are key regulators of epithelial motility and morphogenesis. Recent studies indicate that the HGF/Met pathway also plays a role in B cell differentiation, whereas uncontrolled Met signaling may lead to B cell neoplasia. These observations prompted us to explore HGF/Met signaling in B cells. In this study, we demonstrate that HGF induces strong tyrosine phosphorylation of the proto-oncogene product c-Cbl in B cells and increases Cbl association with the Src family tyrosine kinases Fyn and Lyn, as well as with phosphatidylinositol-3 kinase and CrkL. In addition, we demonstrate that c-Cbl mediates HGF-induced ubiquitination of Met. This requires the juxtamembrane tyrosine Y1001 (Y2) of Met, but not the multifunctional docking site (Y14/15) or any additional C-terminal tyrosine residues (Y13-16). In contrast to wild-type c-Cbl, the transforming mutants v-Cbl and 70Z/3 Cbl, which lack the ubiquitin ligase RING finger domain, suppress Met ubiquitination. Our findings identify c-Cbl as a negative regulator of HGF/Met signaling in B cells, mediating ubiquitination and, consequently, proteosomal degradation of Met, and suggest a role for Cbl in Met-mediated tumorigenesis.  相似文献   

5.
Strict regulation of signaling by receptor tyrosine kinases (RTKs) is essential for normal biological processes, and disruption of this regulation can lead to tumor initiation and progression. Signal duration by the Met RTK is mediated in part by the E3 ligase Cbl. Cbl is recruited to Met upon kinase activation and promotes ubiquitination, trafficking, and degradation of the receptor. The Met RTK has been demonstrated to play a role in various types of cancer. Here, we show that Met-dependent loss of Cbl protein in MET-amplified gastric cancer cell lines represents another mechanism contributing to signal dysregulation. Loss of Cbl protein is dependent on Met kinase activity and is partially rescued with a proteasome inhibitor, lactacystin. Moreover, Cbl loss not only uncouples Met from Cbl-mediated negative regulation but also releases other Cbl targets, such as the EGF receptor, from Cbl-mediated signal attenuation. Thus, Met-dependent Cbl loss may also promote cross-talk through indirect enhancement of EGF receptor signaling.  相似文献   

6.
7.
Rats were exposed to nitrous oxide, which inactivates cob(I)alamin (Cbl). As in air-breathing rats methionine administration led to the conversion of hepatic 5-methyltetrahydrofolate (MeH4 folate) into formyltetrahydrofolate. The recovery of MeH4 folate levels in liver after its oxidation initiated by methionine was noted and the rate compared with that for air-breathing rats. Oxidation of MeH4 folate was less complete and occurred more slowly in Cbl-inactivated rats as compared with controls. However, recovery of MeH4 folate levels was more rapid in Cbl inactivation. S-Adenosylmethionine did not produce a significant change in MeH4 folate levels in Cbl-inactivated rats, whereas it did so in air-breathing animals.  相似文献   

8.
EGF-R [EGF (epidermal growth factor) receptor] ligands can promote or inhibit cell growth. The biological outcome of receptor activation is dictated, at least in part, by ligand-specified patterns of endocytic trafficking. EGF-R trafficking downstream of the ligands EGF and TGF-alpha (transforming growth factor-alpha) has been investigated extensively. However, less is known about EGF-R fates induced by the ligands BTC (betacellulin) and AR (amphiregulin). We undertook comparative analyses to identify ligand-specific molecular events that regulate EGF-R trafficking and degradation. EGF (17 nM) and BTC (8.5 nM) induced significant EGF-R degradation, with or without ectopic expression of the ubiquitin ligase Cbl. Human recombinant AR (17 nM) failed to affect receptor degradation in either case. Notably, levels of ligand-induced EGF-R ubiquitination did not correlate strictly with receptor degradation. Dose-response experiments revealed that AR at a saturating concentration was a partial agonist at the EGF-R, with approx. 40% efficacy (relative to EGF) at inducing receptor tyrosine phosphorylation, ubiquitination and association with Cbl. EGF-R down-regulation and degradation also were compromised upon cell stimulation with AR (136 nM). These outcomes correlated with decreased degradation of the Cbl substrate and internalization inhibitor hSprouty2. Downstream of the hSprouty2 checkpoint in AR-stimulated cells, Cbl-free EGF-R was incorporated into endosomes from which Cbl-EGF-R complexes were excluded. Our results suggest that the AR-specific EGF-R fate results from decreased hSprouty2 degradation and reduced Cbl recruitment to underphosphorylated EGF-R, two effects that impair EGF-R trafficking to lysosomes.  相似文献   

9.
10.
Cobalamin (Cbl, vitamin B12) metabolism was analyzed in cultures of human chorionic villus (CV) cells obtained at 9–10 weeks of gestation. CV cells were shown to synthesize transcobalamin II (TCII) and to possess a high affinity receptor for that molecule. The cells bound and internalized radioactive cyanocobalamin (CN[57Co]Cbl) complexed to TCII. This internalized CN[57Co]Cbl was found to be converted to both methylCbl and adenosylCbl, the two intracellular coenzyme forms of Cbl, and bound to the two known intracellular Cbl requiring enzymes, methionine synthase (MS) and methylmalonyl-CoA mutase. Both enzyme systems were found to be functional in the intact cell by demonstrating the incorporation of the radioactive label from both [14C]CH3-tetrahydrofolate and [14C]propionate into acid insoluble products. MS activity was also detected in lysed cell material. CV cells were shown not to be auxotrophic for methionine since they were able to utilize homocysteine in place of methionine for cell division. Since CV cells are capable of performing many of the complex events associated with Cbl metabolism, it may be possible to use these cells to diagnose genetic defects of Cbl metabolism. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase   总被引:1,自引:0,他引:1  
Ligand-induced down-regulation by the ubiquitin-protein ligases, c-Cbl and Cbl-b, controls signaling downstream from many receptor-tyrosine kinases (RTK). Cbl proteins bind to phosphotyrosine residues on activated RTKs to affect ligand-dependent ubiquitylation of these receptors targeting them for degradation in the lysosome. Both c-Cbl and Cbl-b contain a ubiquitin-associated (UBA) domain, which is important for Cbl dimerization and tyrosine phosphorylation; however, the mechanism of UBA-mediated dimerization and its requirement for Cbl biological activity is unclear. Here, we report the crystal structure of the UBA domain of c-Cbl refined to 2.1-A resolution. The structure reveals the protein is a symmetric dimer tightly packed along a large hydrophobic surface formed by helices 2 and 3. NMR chemical shift mapping reveals heterodimerization can occur with the related Cbl-b UBA domain via the same surface employed for homodimerization. Disruption of c-Cbl dimerization by site-directed mutagenesis impairs c-Cbl phosphorylation following activation of the Met/hepatocyte growth factor RTK and c-Cbl-dependent ubiquitination of Met. This provides direct evidence for a role of Cbl dimerization in terminating signaling following activation of RTKs.  相似文献   

12.
13.
14.
Methionine synthase catalyzes the conversion of N5-methyltetrahydrofolate and homocysteine to tetrahydrofolate and methionine. Methylcobalamin (Me-Cbl) is tightly bound to methionine synthase and is required for enzymatic activity. When added to crude tissue homogenates, Me-Cbl stimulates methionine synthase but similar stimulation is observed with hydroxocobalamin, cyanocobalamin (CN-Cbl), and adenosyl-Cbl, although the mechanisms involved are unknown. We prepared human apomethionine synthase and studied its activation in the presence of [14C]CN-Cbl and [14CH3]Me-Cbl with concentrations of 2-mercaptoethanol ranging from 0.15 to 100 mM. We observed that the removal of the labeled upper axial ligands from CN-Cbl and Me-Cbl both paralleled the activation of human apomethionine synthase. Spectral studies employing CN-Cbl and Me-Cbl showed that both forms of Cbl must be converted to Cob(II)alamin before they can bind to human apomethionine synthase and convert it to its activated holoenzyme form. Studies with 14 different Cbl analogues with alterations in various portions of the corrin ring and the nucleotide showed that all of the analogues were able to fully activate human methionine synthase when they were reduced with 2-mercaptoethanol. Full activation occurred at lower concentrations of many of the Cbl analogues than occurred with Cbl itself. We conclude that Me-Cbl and other forms of Cob(III)alamin do not bind to human apomethionine synthase and that all must first be reduced to Cob(II)alamin before such binding can occur. The fact that human methionine synthase shows little absolute specificity for alterations in various portions of the Cbl molecule suggests that the potent inhibition of mammalian methionine synthase activity observed in vivo with various Cbl analogues is due to inhibition of intracellular Cbl transport or to inhibition of the enzymatic formation of Cob(II)alamin rather than to direct inhibition of mammalian methionine synthase itself.  相似文献   

15.
Our previous studies have shown that glutathione is an essential metabolite in the yeast Saccharomyces cerevisiae because a mutant deleted for GSH1, encoding the first enzyme in gamma-l-glutamyl-l-cysteinylglycine (GSH) biosynthesis, cannot grow in its absence. In contrast, strains deleted for GSH2, encoding the second step in GSH synthesis, grow poorly as the dipeptide intermediate, gamma-glutamylcysteine, can partially substitute for GSH. In this present study, we identify two high copy suppressors that rescue the poor growth of the gsh2 mutant in the absence of GSH. The first contains GSH1, indicating that gamma-glutamylcysteine can functionally replace GSH if it is present in sufficiently high quantities. The second contains CDC34, encoding a ubiquitin conjugating enzyme, indicating a link between the ubiquitin and GSH stress protective systems. We show that CDC34 rescues the growth of the gsh2 mutant by inducing the Met4-dependent expression of GSH1 and elevating the cellular levels of gamma-glutamylcysteine. Furthermore, this mechanism normally operates to regulate GSH biosynthesis in the cell, as GSH1 promoter activity is induced in a Met4-dependent manner in a gsh1 mutant which is devoid of GSH, and the addition of exogenous GSH represses GSH1 expression. Analysis of a cis2 mutant, which cannot breakdown GSH, confirmed that GSH and not a metabolic product, serves as the regulatory molecule. However, this is not a general mechanism affecting all Met4-regulated genes, as MET16 expression is unaffected in a gsh1 mutant, and GSH acts as a poor repressor of MET16 expression compared with methionine. In summary, GSH biosynthesis is regulated in parallel with sulphate assimilation by activity of the Met4 protein, but GSH1-specific mechanisms exist that respond to GSH availability.  相似文献   

16.
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Its translation system therefore depends on the import of nucleus-encoded tRNAs. Thus, except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The only tRNA(Met) present in T. brucei mitochondria is therefore the one which, in the cytosol, is involved in translation elongation. Mitochondrial translation initiation depends on an initiator tRNA(Met) carrying a formylated methionine. This tRNA is then recognized by initiation factor 2, which brings it to the ribosome. To guarantee mitochondrial translation initiation, T. brucei has an unusual methionyl-tRNA formyltransferase that formylates elongator tRNA(Met). In the present study, we have identified initiation factor 2 of T. brucei and shown that its carboxyl-terminal domain specifically binds formylated trypanosomal elongator tRNA(Met). Furthermore, the protein also recognizes the structurally very different Escherichia coli initiator tRNA(Met), suggesting that the main determinant recognized is the formylated methionine. In vivo studies using stable RNA interference cell lines showed that knock-down of initiation factor 2, depending on which construct was used, causes slow growth or even growth arrest. Moreover, concomitantly with ablation of the protein, a loss of oxidative phosphorylation was observed. Finally, although ablation of the methionyl-tRNA formyltransferase on its own did not impair growth, a complete growth arrest was observed when it was combined with the initiation factor 2 RNA interference cell line showing the slow growth phenotype. Thus, these experiments illustrate the importance of mitochondrial translation initiation for growth of procyclic T. brucei.  相似文献   

17.
The bacterial pathogen Listeria monocytogenes uses the surface protein InlB to invade a variety of cell types. The interaction of InlB with the hepatocyte growth-factor receptor, Met, is crucial for infection to occur. Remarkably, the ubiquitin ligase Cbl is rapidly recruited to InlB-activated Met. Recent studies have shown that ligand-dependent endocytosis of Met and other receptor tyrosine kinases is triggered by monoubiquitination of the receptor, a process that is mediated by Cbl. Here, we show that purified InlB induces the Cbl-dependent monoubiquitination and endocytosis of Met. We then demonstrate that the bacterium exploits the ubiquitin-dependent endocytosis machinery to invade mammalian cells. First, we show that L. monocytogenes colocalizes with Met, EEA1, Cbl, clathrin and dynamin during entry. Then, we assess the role of different proteins of the endocytic machinery during L. monocytogenes infection. Over-expression or down-regulation of Cbl, respectively, increases or decreases bacterial invasion. Furthermore, RNA interference-mediated knock-down of major components of the endocytic machinery (for example, clathrin, dynamin, eps15, Grb2, CIN85, CD2AP, cortactin and Hrs), inhibit bacterial entry, establishing that the endocytic machinery is key to the bacterial internalization process.  相似文献   

18.
Derepression of some methionine biosynthetic enzymes (methionine group I enzymes) obtained in methionine limitation has been found to be accompanied by a significant lack of in vivo charging of bulk methionine transfer ribonucleic acid (tRNA(Met)) and in addition by a decreased rate of synthesis of all tRNAs. Under the same conditions, methionyl-tRNA synthetase (MTS) was derepressed rather than repressed. These results are in agreement with those previously published based on studies of a mutant with an impaired MTS (5) and reinforce the idea that the rate of synthesis of methionine group I enzymes can be related to the total content of methionyl (Met)-tRNA (Met) per cell. They also render unlikely that MTS could be a constituent of the regulatory signal.  相似文献   

19.
Cultured fibroblasts from patients with functional methionine synthase deficiency have been shown to belong to two complementation classes, cblE and cblG. Both are associated with decreased intracellular levels of methylcobalamin (MeCbl) and decreased incorporation of label from 5-methyltetrahydrofolate into macromolecules. Methionine synthase specific activity is normal or near normal in cell extracts from cblE patients under standard reducing conditions, whereas specific activity is low in cblG extracts. Seven of 10 cblG cell lines accumulated [57Co]CN-Cbl equivalent to control cells and showed similar proportions of label associated with the two intracellular cobalamin binders, methionine synthase and methylmalonyl-CoA mutase. The remaining three cblG lines showed reduced accumulation of labeled Cbl and virtually none associated with methionine synthase. The specific activity of methionine synthase was decreased in cell extracts from both cblG subgroups, being almost undetectable in extracts from the latter three lines. Incorporation of label from [14C]MeTHF into either macromolecules or into methionine was decreased in both cblG groups, but was paradoxically higher in the three lines with very low in vitro methionine synthase activity. These results demonstrate further heterogeneity within cblG and suggest that the defect in the three variant lines affects the ability of methionine synthase to retain Cbl.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号