首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CDR3 of the Ig H chain (CDR3(H)) is significantly different in fetal and adult repertoires. To understand the mechanisms involved in the developmental changes in the CDR3(H) of Ig H chains, sets of nonproductive V(H)DJ(H) rearrangements obtained from fetal, full-term neonates and adult single B cells were analyzed and compared with the corresponding productive repertoires. Analysis of the nonproductive repertoires was particularly informative in assessing developmental changes in the molecular mechanisms of V(H)DJ(H) recombination because these rearrangements did not encode a protein and therefore their distribution was not affected by selection. Although a number of differences were noted, the major reasons that fetal B cells expressed Ig H chains with shorter CDR3(H) were both diminished TdT activity in the DJ(H) junction and the preferential use of the short J(H) proximal D segment D7-27. The enhanced usage of D7-27 by fetal B cells appeared to relate to its position in the locus rather than its short length. The CDR3(H) progressively acquired a more adult phenotype during ontogeny. In fetal B cells, there was decreased recurrent DJ(H) rearrangements before V(H)-DJ(H) rearrangement and increased usage of junctional microhomologies both of which also converted to the adult pattern during ontogeny. Overall, these results indicate that the decreased length and complexity of the CDR3(H) of fetal B cells primarily reflect limited enzymatic modifications of the joins as well as a tendency to use proximal D and J(H) segments during DJ(H) rearrangements.  相似文献   

2.
Since the actual combinatorial diversity in the V(H) repertoire in fetal piglets represents <1% of the potential in mice and humans, we wondered whether 1) complementarity-determining region 3 (CDR3) diversity was also restricted; 2) CDR3 diversity changed with fetal age; and 3) to what extent CDR3 contributed to the preimmune VDJ repertoire. CDR3 spectratyping and sequence analyses of 213 CDR3s recovered from >30 fetal animals of different ages showed that >95% of VDJ diversity resulted from junctional diversity. Unlike sheep and cattle, somatic hypermutation does not contribute to the repertoire. These studies also revealed that 1) N region additions are as extensive in VDJ rearrangements recovered at 30 days as those in late term fetuses, suggesting that TdT is fully active at the onset of VDJ rearrangement; 2) nearly 90% of all rearrangement are in-frame until late gestation; 3) the oligoclonal CDR3 spectratype of 30-day fetal liver becomes polyclonal by 50 days, while this change occurs much later in spleen; 4) there is little evidence of individual variation in CDR3 spectratype or differences in spectratype among lymphoid tissues with the exception of the thymus; and 4) there is a tendency for usage of the most J(H) proximal D(H) segment (D(H)B) to decrease in older fetuses and for the longer D(H) segment to be trimmed to the same length as the shorter D(H) when used in CDR3. These findings suggest that in the fetal piglet, highly restricted combinatorial diversity and the lack of somatic mutation are compensated by early onset of TdT activity and other mechanisms that contribute to CDR3 junctional diversity.  相似文献   

3.
The combinatorial repertoire of AgRs is established through somatic recombination of V, D, and J gene segments during lymphocyte development. Incorporation of D segments into IgH, TCRbeta, and TCRdelta chains also contributes to junctional diversification by substantially extending the length of the third CDR. The V, D, and J gene segments are flanked by recombination signals (RS) of 12- or 23-mer spacer length that direct recombination according to the 12/23 rule. D genes in the TCRbeta and TCRdelta loci are flanked by a 12RS and 23RS, and their incorporation is controlled by mechanisms "beyond the 12/23 rule." In the TCRbeta locus, selective interactions between Rag proteins and the RS flanking the V-D and D-J genes, respectively, are sufficient to enforce D gene usage. In this article, we report that in the TCRdelta locus, the Rag proteins are not the major determinant of D gene incorporation. In developing mouse and human thymocytes, the two Ddelta genes rearrange predominantly to form D-D coding joints. In contrast, when tested in ex vivo transfection assays in a nonlymphoid cell line, the flanking RS mediate deletion, rather than incorporation, of the two D genes on both exogenous recombination substrates and the endogenous locus. These results suggest that selective Rag-RS interactions are not the sole regulators of D gene segment incorporation, and additional, perhaps lymphocyte-specific, mechanisms exist that allow proper shaping of the primary AgR repertoire.  相似文献   

4.
We analyzed 77 nonproductive and 574 productive human V(H)DJ(H) rearrangements with a newly developed program, JOINSOLVER. In the productive repertoire, the H chain complementarity determining region 3 (CDR3(H)) was significantly shorter (46.7 +/- 0.5 nucleotides) than in the nonproductive repertoire (53.8 +/- 1.9 nucleotides) because of the tendency to select rearrangements with less TdT activity and shorter D segments. Using criteria established by Monte Carlo simulations, D segments could be identified in 71.4% of nonproductive and 64.4% of productive rearrangements, with a mean of 17.6 +/- 0.7 and 14.6 +/- 0.2 retained germline nucleotides, respectively. Eight of 27 D segments were used more frequently than expected in the nonproductive repertoire, whereas 3 D segments were positively selected and 3 were negatively selected, indicating that both molecular mechanisms and selection biased the D segment usage. There was no bias for D segment reading frame (RF) use in the nonproductive repertoire, whereas negative selection of the RFs encoding stop codons and positive selection of RF2 that frequently encodes hydrophilic amino acids were noted in the productive repertoire. Except for serine, there was no consistent selection or expression of hydrophilic amino acids. A bias toward the pairing of 5' D segments with 3' J(H) segments was observed in the nonproductive but not the productive repertoire, whereas V(H) usage was random. Rearrangements using inverted D segments, DIR family segments, chromosome 15 D segments and multiple D segments were found infrequently. Analysis of the human CDR3(H) with JOINSOLVER has provided comprehensive information on the influences that shape this important Ag binding region of V(H) chains.  相似文献   

5.
Mouse antibody response to group A streptococcal carbohydrate   总被引:1,自引:0,他引:1  
In an attempt to more fully understand the generation of antibody diversity to carbohydrate (CHO) Ag, we produced and characterized a panel of hybridoma cell lines specific for group A streptococcal CHO from mice injected with the intact bacteria (minus the hyaluronic acid capsule and cell wall protein Ag). We have analyzed the use of H and L chain V region genes in the early (day 7) and late response (hyperimmune) and have sequenced the dominant VH gene used in several of our hybridomas. Our data allowed us to assess the extent to which the recombination of various V, D, and J gene segments and somatic mutation contribute to antibody diversification in this system. In this report we confirm that a minimum of two VH and four VK gene segments are used to encode this response. We extend this analysis to show that multiple D and J gene segments are used and that a significant amount of junctional variability is tolerated in CDR 3. Our results indicate that the level of somatic mutation in the hyperimmune response is generally low in comparison with the response to haptens and protein Ag. These data also suggest that there is a positive selection for mutation in CDR 1 during the hyperimmune response to group A streptococcal CHO.  相似文献   

6.
7.
CDR3 regions containing two D segments, or containing the footprints of V(H) replacement events, have been reported in both mice and humans. However, the 12-23 bp rule for V(D)J recombination predicts that D-D rearrangements, which would occur between 2 recombination signal sequences (RSSs) with 12-bp spacers, should be extremely disfavored, and the cryptic RSS used for V(H) replacement is very inefficient. We have previously shown that newborn mice, which lack TdT due to the late onset of its expression, do not contain any CDR3 with D-D rearrangements. In the present study, we test our hypothesis that most D-D rearrangements are due to fortuitous matching of the second apparent D segment by TdT-introduced N nucleotides. We analyzed 518 sequences from adult MRL/lpr- and C57BL/6 TdT-deficient B cell precursors and found only two examples of CDR3 with D-D rearrangements and one example of a potential V(H) replacement event. We examined rearrangements from pre-B cells, marginal zone B cells, and follicular B cells from mice congenic for the Lbw5 (Sle3/5) lupus susceptibility loci and from other strains of mice and found very few examples of CDR3 with D-D rearrangements. We assayed B progenitor cells, and cells enriched for receptor editing, for DNA breaks at the "cryptic heptamer" but such breaks were rare. We conclude that many examples of apparent D-D rearrangements in the mouse are likely due to N additions that fortuitously match short stretches of D genes and that D-D rearrangements and V(H) replacement are rare occurrences in the mouse.  相似文献   

8.
In this work, to study the emergence of the H chain V region repertoire during mammalian evolution, we present an analysis of 25 independent H chain V regions from a monotreme, the Australian duck-billed platypus, Ornithorhynchus anatinus. All the sequences analyzed were found to form a single branch within the clan III of mammalian V region sequences in a distance tree. However, compared with a classical V gene family this branch was more diversified in sequence. Sequence analysis indicates that the apparent lack of diversity in germline V segments is well compensated for by relatively long and highly diversified D and N nucleotides. In addition, extensive sequence variation was observed in the framework region 3. Furthermore, at least five and possibly seven different J segments seem to be actively used in recombination. Interestingly, internal cysteine bridges in the complementarity-determining region (CDR)3 loop, or between the CDR2 and CDR3 loops, are found in approximately 36% of the platypus V(H) sequences. Such cysteine bridges have also been observed in cow, camel, and shark. Internal cysteine bridges may play a role in stabilizing long and diversified CDR3 and thereby have a role in increasing the affinity of the Ab-Ag interaction.  相似文献   

9.
Immunoglobulin gene rearrangements in normal mouse B cells.   总被引:4,自引:0,他引:4  
We have analyzed the structure of rearranged mu heavy-chain genes obtained from the genomic DNA of normal BALB/c mouse spleen cells expressing surface immunoglobulin M. Examples were found of two types of nonproductive rearrangements, which may be responsible for allelic exclusion in normal B cells. In one of these rearrangements, a germ line D gene segment has joined to the JH4 gene segment but no V/D joining has occurred. We present evidence that D gene segments lie as a cluster between V and J gene segments in the germ line. A comparison of conserved sequences in V and D gene segments suggests that the D gene segments, which are found only in the heavy-chain gene family, may have evolved from V gene segments similar to the Vk family.  相似文献   

10.
Chromatin remodeling at the Ig loci prior to V(D)J recombination.   总被引:8,自引:0,他引:8  
Rearrangement of Ig H and L chain genes is highly regulated and takes place sequentially during B cell development. Several lines of evidence indicate that chromatin may modulate accessibility of the Ig loci for V(D)J recombination. In this study, we show that remodeling of V and J segment chromatin occurs before V(D)J recombination at the endogenous H and kappa L chain loci. In recombination-activating gene-deficient pro-B cells, there is a reorganization of nucleosomal structure over the H chain J(H) cluster and increased DNase I sensitivity of V(H) and J(H) segments. The pro-B/pre-B cell transition is marked by a decrease in the DNase I sensitivity of V(H) segments and a reciprocal increase in the nuclease sensitivity of Vkappa and Jkappa segments. In contrast, J(H) segments remain DNase I sensitive, and their nucleosomal organization is maintained in mu(+) recombination-activating gene-deficient pre-B cells. These results indicate that initiation of rearrangement is associated with changes in the chromatin structure of both V and J segments, whereas stopping recombination involves changes in only V segment chromatin. We further find an increase in histone H4 acetylation at both the H and kappa L chain loci at the pro-B cell stage. Although histone H4 acetylation appears to be an early change associated with B cell commitment, acetylation alone is not sufficient to promote subsequent modifications in Ig chromatin.  相似文献   

11.
T cell repertoires observed in response to immunodominant and subdominant peptides include private, i.e., specific for each individual, as well as public, i.e., common to all mice or humans of the same MHC haplotype, Valpha-Jalpha and Vbeta-Dbeta-Jbeta rearrangements. To measure the impact of N-region diversity on public repertoires, we have characterized the alphabeta TCRs specific for several CD4 or CD8 epitopes of wild-type mice and of mice deficient in the enzyme TdT. We find that V, (D), J usage identified in public repertoires is strikingly conserved in TdT(o/o) mice, even for the CDR3 loops which are shorter than those found in TdT(+/+) animals. Moreover, the 10- to 20-fold decrease in alphabeta T cell diversity in TdT(o/o) mice did not prevent T cells from undergoing affinity maturation during secondary responses. A comparison of the CDR3beta in published public and private repertoires indicates significantly reduced N-region diversity in public CDR3beta. We interpret our findings as suggesting that public repertoires are produced more efficiently than private ones by the recombination machinery. Alternatively, selection may be biased in favor of public repertoires in the context of the interactions between TCR and MHC peptide complexes and we hypothesize that MHCalpha helices are involved in the selection of public repertoires.  相似文献   

12.
Ordered assembly of Ag receptor genes by VDJ recombination is a key determinant of successful lymphocyte differentiation and function. Control of gene rearrangement has been traditionally viewed as a result of complex reorganization of the nucleochromatin mediated by several nuclear factors. Selective recombination of the variable (V) genes to the diversity (D), but not joining (J), gene segments within the TCRbeta locus has been shown to be controlled by recombination signal (RS) sequences that flank the gene segments. Through ex vivo and in vitro recombination assays, we demonstrate that the Rag proteins can discriminate between the RS of the D and J genes and enforce selective D gene incorporation into the TCRbeta variable domain in the absence of other nuclear factors or chromatin structure. DNA binding studies indicate that discrimination is not simply caused by higher affinity binding of the Rag proteins to the isolated 12RS of the D as opposed to the J genes. Furthermore, we also demonstrate that the 12RS within the TCRbeta locus is functionally inferior to the consensus 12RS. We propose that selective gene segment usage is controlled at the level of differential assembly and/or stability of synaptic RS complexes, and that evolutionary "deterioration" of the RS motifs may have been important to allow the VDJ recombinase to exert autonomous control over gene segment use during gene rearrangement.  相似文献   

13.
A/J mice immunized with p-azophenylarsonate coupled to keyhole limpet hemocyanin produce antibodies expressing a cross-reactive idiotype (CRIA). The pretreatment of A/J mice with anti-idiotypic polyclonal or monoclonal antibody directed against the major cross-reactive idiotype (CRIA) borne by p-azophenylarsonate-specific antibody can lead to idiotypic suppression. In this study, we investigate this idiotypic suppression by using four mAb2 (E4, H8, E3, 2D3) recognizing distinct idiotopes whose expression is related to the presence of particular gene segments of the heavy chain V region. 2D3 expression has been related to the presence of some amino acid in the CDR2 region of the VH gene segment derived from the germ line VH IdCR11. So far, the latter is the only germ-line gene coding for CRIA+ antibody that has been identified in the A/J genome. E4 and H8 expression has been related to the use of a particular D segment, whereas E3 expression has been attributed to certain combinations of D and JH segments. Therefore, we might expect independent regulation of the expression of those various idiotopes in relation to the mechanism of gene recombination. Indeed, we observed that 2D3-suppressed A/J mice still produce the three other idiotopes, suggesting the recombination of those particular D and J segments with a different VH gene. Such a gene has been identified in the genome of BALB/c mice. A/J mice pretreated with one of the other three mAb2 are generally cosuppressed for the expression of E4, H8, and E3, but they still produce 2D3+ antibody. In this case, the IdCR11 VH germ-line gene is most probably recombined with different D and J segments. Molecular evidence for the existence of such molecules has also been presented in the literature. So our serologic data on idiotopic suppression in the arsonate system can be compared with recent data provided by molecular genetics.  相似文献   

14.
We examined TCR gene usage in a panel of beef insulin/I-Ad-restricted T cell hybrids obtained from BALB/c mice. These hybrids demonstrated several distinct patterns of reactivity defined by their ability to respond to species variants of insulin. Correlation of TCR-alpha and -beta-gene usage with these patterns of reactivity demonstrated that TCR gene usage was restricted within Ag reactivity groups. In particular, V-J junctional regions (CDR3 equivalent) were restricted with conserved junctional amino acid motifs present in both TCR-alpha- and -beta-chains. Comparison of TCR gene usage in hybrids expressing identical V alpha and V beta gene segments but demonstrating different patterns of reactivity revealed that changes in either J alpha and/or J beta gene segment usage could alter antigenic reactivity. Indeed, single or limited amino acid differences within the CDR3 region were sufficient to markedly alter fine specificity. These data demonstrate the critical role for CDR3 in determining antigenic reactivity in beef insulin-reactive hybrids and are compatible with the current model of TCR/peptide/MHC interaction.  相似文献   

15.
Although V(D)J recombination is thought to be regulated by changes in the accessibility of chromatin to the recombinase machinery, the mechanisms responsible for establishing "open" chromatin are poorly understood. We performed a detailed study of the acetylation status of histones associated with 11 V(H) gene segments, their flanking regions, and various intergenic elements during B-cell development and ontogeny, when V(D)J recombination is highly regulated. Histone H4 shows higher and more-regulated acetylation than does histone H3 in the V(H) locus. In adult pro-B cells, V(H) gene segments are acetylated prior to V(D)J rearrangement, with higher acetylation associated with J(H)-distal V(H) gene segments. While large regions of the V(H) locus have similar patterns of histone acetylation, acetylation is narrowly confined to the gene segments, their flanking promoters, and recombinase signal sequence elements. Thus, histone acetylation in the V(H) locus is both locally and globally regulated. Increased histone acetylation accompanies preferential recombination of J(H)-proximal V(H) gene segments in early B-cell ontogeny, and decreased histone acetylation accompanies inhibition of V-DJ recombination in a transgenic model of immunoglobulin heavy-chain allelic exclusion. Thus, changes in histone acetylation appear to be important for both promotion and inhibition of V-DJ rearrangement during B-cell ontogeny and development.  相似文献   

16.
T cells bearing gamma delta Ag receptors accumulate in the lesions of patients with localized American cutaneous leishmaniasis (LCL), and are thought to be involved in immunity to the parasite. To obtain clues as to the nature of the Ag recognized by these cells, we analyzed the diversity of the TCR delta-chain in LCL lesions. Using mAb against variable (V) encoded determinants with immunoperoxidase, both V delta 1 and V delta 2 subpopulations were identified in the dermal granulomas. However, within the epidermis of LCL lesions, the majority of the gamma delta T cells were V delta 1 positive. PCR analysis of lesion-derived DNA using oligonucleotide primers for V and junctional (J) gene segments revealed preferential usage of J delta 1 in lesions compared with the peripheral blood of these patients. Nucleotide sequence analysis of the V-J junction indicated limited diversity of gamma delta T cells within specific microanatomic regions. In addition, use of a single diversity (D) gene segment, D delta 3, in V delta 2 cells in lesions was observed, as opposed to multiple D delta gene segment usage in the blood of the same individuals. The distribution, gene segment usage and clonality of gamma delta T cells in lesions of leishmaniasis was remarkably similar to that observed in leprosy. Therefore, gamma delta T cells responding to infection may recognize a limited set of nominal Ag, perhaps common to distinct pathogens and/or those expressed by the host. Our findings are most consistent with a model in which specific gamma delta T cells are clonally selected by these Ag in lesions and undergo oligoclonal expansion within a microanatomic region.  相似文献   

17.
18.
19.
The complete amino acid sequence of five light chain variable (V) regions of human monoclonal IgM kappa rheumatoid factors (RF) was determined, and their cross-reactive idiotypes (CRI) were characterized with antibodies induced by immunization with synthetic peptides PSL2 and PSL3, corresponding to the second and third complementarity-determining regions (CDR) of the SIE light chain. Together with two additional RF studied previously, all seven RF belong to the V kappa IIIb sub-subgroup. The region encoded by the V kappa gene segment (positions 1 to 95) in all seven proteins was virtually identical in primary structure, whereas the sequence from positions 96 to 108 defined the usage of the J kappa 1 gene in three proteins and the J kappa 2 gene in four of them. Position 96 contributed by the recombination of the V kappa and J kappa gene segments showed the presence of four different amino acid residues. Both anti-PSL2 and anti-PSL3 bind efficiently to all separated L chains when analyzed by the Western blot technique, and the binding was inhibited specifically by the corresponding peptides. The results reveal that the majority of human IgM-RF light chains are derived from a single germ line V kappa gene or a family of closely related V kappa III germ line genes, and express two "primary structure-dependent" CRI, which are largely dependent on the amino acid sequence of the second and third light chain CDR.  相似文献   

20.
Much of the nonrandom usage of V, D, and J genes in the Ab repertoire is due to different frequencies with which gene segments undergo V(D)J rearrangement. The recombination signal sequences flanking each segment are seldom identical with consensus sequences, and this natural variation in recombination signal sequence (RSS) accounts for some differences in rearrangement frequencies in vivo. Here, we have sequenced the RSS of 19 individual V(H)7183 genes, revealing that the majority have one of two closely related RSS. One group has a consensus heptamer, and the other has a nonconsensus heptamer. In vitro recombination substrate studies show that the RSS with the nonconsensus heptamer, which include the frequently rearranging 81X, rearrange less well than the RSS with the consensus heptamer. Although 81X differs from the other 7183-I genes at three positions in the spacer, this does not significantly increase its recombination potency in vitro. The rearrangement frequency of all members of the family was determined in microMT mice, and there was no correlation between the in vitro recombination potential and V(H) gene rearrangement frequency in vivo. Furthermore, genes with identical RSS rearrange at different frequencies in vivo. This demonstrates that other factors can override differences in RSS potency in vivo. We have also determined the gene order of all V(H)7183 genes in a bacterial artificial chromosome contig and show that most of the frequently rearranging genes are in the 3' half of the region. This suggests that chromosomal location plays an important role in nonrandom rearrangement of the V(H)7183 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号