首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Young loggerhead sea turtles (Caretta caretta) from eastern Florida, U.S.A., undertake a transoceanic migration in which they gradually circle the North Atlantic Ocean before returning to the North American coast. Hatchlings in the open sea are guided at least partly by a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial locations along the migratory route. The magnetic map exists in turtles that have never migrated and thus appears to be inherited. Turtles derive both longitudinal and latitudinal information from the Earth's field, most likely by exploiting unique combinations of field inclination and intensity that occur in different geographic areas. Similar mechanisms may function in the migrations of diverse animals.  相似文献   

2.
After emerging from underground nests, sea turtle hatchlings migrate through the surf zone and out to the open ocean. During this migration, both waves and water currents can disrupt hatchling orientation by unpredictably rotating the turtles away from their migratory headings. In addition, waves cause turtles to roll and pitch, temporarily impeding forward swimming by forcing the hatchlings into steeply inclined positions. To maintain seaward orientation and remain upright in the water column, hatchlings must continuously compensate for such displacements. As a first step toward determining how this is achieved, we studied the responses of loggerhead (Caretta caretta L.) sea turtle hatchlings to rotational displacements involving yaw, roll, and pitch. Hatchlings responded to rotations in the horizontal plane (yaw) by extending the rear flipper on the side opposite the direction of rotation. Thus, the flipper presumably acts as a rudder to help turn the turtle back toward its original heading. Turtles responded to rotations in the roll plane with stereotypic movements of the front flippers that act to right the hatchlings with respect to gravity. Finally, hatchlings responded to rotations in the pitch plane with movements of the hind flippers that appear likely to curtail or counteract the pitching motion. Thus, the results of these experiments imply that young sea turtles emerge from their nests possessing a suite of stereotypic behavioral responses that function to counteract rotational displacements, enable the animals to maintain equilibrium, and facilitate efficient movement toward the open sea.  相似文献   

3.
Biological terrestrial locomotion occurs on substrate materials with a range of rheological behaviour, which can affect limb-ground interaction, locomotor mode and performance. Surfaces like sand, a granular medium, can display solid or fluid-like behaviour in response to stress. Based on our previous experiments and models of a robot moving on granular media, we hypothesize that solidification properties of granular media allow organisms to achieve performance on sand comparable to that on hard ground. We test this hypothesis by performing a field study examining locomotor performance (average speed) of an animal that can both swim aquatically and move on land, the hatchling Loggerhead sea turtle (Caretta caretta). Hatchlings were challenged to traverse a trackway with two surface treatments: hard ground (sandpaper) and loosely packed sand. On hard ground, the claw use enables no-slip locomotion. Comparable performance on sand was achieved by creation of a solid region behind the flipper that prevents slipping. Yielding forces measured in laboratory drag experiments were sufficient to support the inertial forces at each step, consistent with our solidification hypothesis.  相似文献   

4.
Recently, it was demonstrated that a uniaxial accelerometer worn at the hip could estimate resistance exercise energy expenditure. As resistance exercise takes place in more than 1 plane, the use of a triaxial accelerometer may be more effective in estimating resistance exercise energy expenditure. The aims of this study were to estimate the energy cost of resistance exercise using triaxial accelerometry and to determine the optimal location for wearing triaxial accelerometers during resistance exercise. Thirty subjects (15 men and 15 women; age = 21.7 ± 1.0 years) performed a resistance exercise protocol consisting of 2 sets of 8 exercises (10RM loads). During the resistance exercise protocol, subjects wore triaxial accelerometers on the wrist, waist, and ankle; a heart rate monitor; and a portable metabolic system. Net energy expenditure was significantly correlated with vertical (r = 0.67, p < 0.001), horizontal (r = 0.43, p = 0.02), third axis (r = 0.36, p = 0.048), and sum of 3 axes (r = 0.50, p = 0.005) counts at the waist, and horizontal counts at the wrist (r = -0.40, p = 0.03). Regression analysis using fat-free mass, sex, and the sum of accelerometer counts at the waist as variables was used to develop an equation that explained 73% of the variance of resistance exercise energy expenditure. A triaxial accelerometer worn at the waist can be used to estimate resistance exercise energy expenditure but appears to offer no benefit over uniaxial accelerometry. The use of accelerometers in estimating resistance exercise energy expenditure may prove useful for individuals and athletes who participate in resistance training and are focused on maintaining a tightly regulated energy balance.  相似文献   

5.
The eyes of three species of sea turtle hatchlings (loggerheads, green turtles, and leatherbacks) possess visual streaks, areas of densely packed ganglion cells running along the antero‐posterior retinal axis. These probably function to provide heightened visual acuity along the horizon. The vertical extent and absolute concentration of cells within the streak, compared to the rest of the retina, differ among the species. Leatherbacks have an additional specialized region (area temporalis) that might enhance their ability to detect prey below them in the water column. Green turtles and loggerheads, but not leatherbacks, show compensatory eye reflexes that keep the visual streak horizontal. Species differences in retinal structure and eye reflexes probably reflect their unique specializations in visual ecology and behaviour.  相似文献   

6.
Loggerhead sea turtles (Caretta caretta) derive both directional and positional information from the Earths magnetic field, but the mechanism underlying magnetic field detection in turtles has not been determined. One hypothesis is that crystals of biogenic, single-domain magnetite provide the physical basis of the magnetic sense. As a first step toward determining if magnetite is involved in sea turtle magnetoreception, hatchling loggerheads were exposed to pulsed magnetic fields (40 mT, 4 ms rise time) capable of altering the magnetic dipole moment of biogenic magnetite crystals. A control group of turtles was treated identically but not exposed to the pulsed fields. Both groups of turtles subsequently oriented toward a light source, implying that the pulsed fields did not disrupt the motivation to swim or the ability to maintain a consistent heading. However, when swimming in darkness under conditions in which turtles normally orient magnetically, control turtles oriented significantly toward the offshore migratory direction while those that were exposed to the magnetic pulses did not. These results are consistent with the hypothesis that at least part of the sea turtle magnetoreception system is based on magnetite. In principle, a magnetite-based magnetoreception system might be involved in detecting directional information, positional information, or both.  相似文献   

7.
Temperate species of turtles hatch from eggs in late summer. The hatchlings of some species leave their natal nest to hibernate elsewhere on land or under water, whereas others usually remain inside the nest until spring; thus, post-hatching behavior strongly influences the hibernation ecology and physiology of this age class. Little is known about the habitats of and environmental conditions affecting aquatic hibernators, although laboratory studies suggest that chronically hypoxic sites are inhospitable to hatchlings. Field biologists have long been intrigued by the environmental conditions survived by hatchlings using terrestrial hibernacula, especially nests that ultimately serve as winter refugia. Hatchlings are unable to feed, although as metabolism is greatly reduced in hibernation, they are not at risk of starvation. Dehydration and injury from cold are more formidable challenges. Differential tolerances to these stressors may explain variation in hatchling overwintering habits among turtle taxa. Much study has been devoted to the cold-hardiness adaptations exhibited by terrestrial hibernators. All tolerate a degree of chilling, but survival of frost exposure depends on either freeze avoidance through supercooling or freeze tolerance. Freeze avoidance is promoted by behavioral, anatomical, and physiological features that minimize risk of inoculation by ice and ice-nucleating agents. Freeze tolerance is promoted by a complex suite of molecular, biochemical, and physiological responses enabling certain organisms to survive the freezing and thawing of extracellular fluids. Some species apparently can switch between freeze avoidance or freeze tolerance, the mode utilized in a particular instance of chilling depending on prevailing physiological and environmental conditions.  相似文献   

8.
9.
J. Frick 《Animal behaviour》1976,24(4):849-857
To investigate the initial stage of the ‘lost-year puzzle’ of sea turtle ecology, both hatchlings from the natural nesting groung at Tortuguero, Costa Rica and hatchlings from Tortuguero eggs that had hatched in a beach on Bermuda were tracked individually after their departure from these beaches. Of the Bermuda beach most were tracked by swimmers equipped with face mask and flippers and followed by a boat. Tracking off Tortuguero was done by an observer in a following boat. The data showed that non-random departure courses were maintained even when swimming hatchlings and moved over the horizon from all fixed objects on the shore. Observations were made on swimming and diving behaviour and on predator relationships of travelling turtles. The procedures described are useful research techniques and will be used for more extensive tracking in future seasons.  相似文献   

10.
Locomotion in hatchling leatherback turtles Dermochelys coriacea   总被引:1,自引:0,他引:1  
Hatchling leatherback turtles can only swim forwards, and employ synchronized beating of the forelimbs whether swimming slowly or quickly. The hind limbs make no contribution to propulsion. Effectively, the hatchlings have two swimming speeds; subsurface and fast (30 cm s-1) or surfaced and slow (8 cm s-1). Intermediate velocities are transitory; the hatchlings were never seen to rest without movement, nor did they exhibit gliding of the type seen in green turtles. During fast ('vigorous') swimming, power is developed on both the upstroke and downstroke of the limb cycle. During slow swimming, power is only developed during the upstroke—a consequence of the orientation of the axis of limb beat which is opposite in direction to that of cheloniid sea turtles. Terrestrial locomotion is laboured and features an unstable gait which involves simultaneous movement of all four limbs and forward overbalancing during each limb cycle.  相似文献   

11.
Summary The lachrymal salt glands ofChelonia mydas were functional when hatchlings emerged from the nest. Osmotic concentrations up to 720 mosmol kg–1 were recorded in spontaneously produced tears (salt gland secretions). When injected with a Na+ load (1500–2700 mol (100 g)–1) newly emerged hatchlings produced tears ranging in osmotic concentration from 1000–1900 mosmol kg–1 with Na+ secretion rates from single glands of 200–475 mol (100 g·h)–1. In these circumstances the rate of sodium excretion, via the salt glands, was equivalent to the sodium content of 0.2 to 0.5 ml of sea water per hour. Since the apparent drinking rate of hatchlings within the first two days of entering sea water was approximately 0.5 to 1.7 ml per day, the excretion of Na+ imbibed by drinking is well within the secretory capacity of the lachrymal salt glands.In feeding hatchlings extraordinarily high Na+ secretion rates were induced by Na+ loading. Hatchlings which were loaded with Na+ by injection (1500–5400 mol (100 g)–1) produced tears having osmotic concentrations between 1500 and >2000 mosmol kg–1. The Na+ secretion rates from single glands were 750–4185 mol (100 g·h)–1 with extremely high short term rates of 10700 mol (100 g·h)–1 (50 mol min–1 for 28 g hatchlings).In terms of gland mass the highest long term secretion rate translates into 21 mmol of Na+ per gram of salt gland per hour and is the highest secretion rate yet recorded for a reptilian salt gland. This rate is almost three times the highest rate recorded for sea snakes (8 mmol g·h–1) and is similar to rates commonly observed in avian salt glands (25 mmol g·h–1).Secretion by the lachrymal salt glands was initiated by increased blood concentrations of Na+ or K+, K+ being as effective as Na+ but with the composition of the teras being virtually unchanged compared to tears from Na+ stimulated hatchlings. Preliminary experiments indicated that secretion was not initiated by increased Cl concentration in the blood or by increased volume or osmotic concentration of the blood.Abbreviation O.P. osmotic pressure  相似文献   

12.
A theoretically valid proxy of energy expenditure is the acceleration of an animal's mass due to the movement of its body parts. Acceleration can be measured by an accelerometer and recorded onto a data logging device. Relevant studies have usually derived a measure of acceleration from the raw data that represents acceleration purely due to movement of the animal. This is termed ‘overall dynamic body acceleration’ (ODBA) and to date has proved a robust derivation of acceleration for use as an energy expenditure proxy. Acceleration data loggers are generally easy to deploy and the measures recorded appear robust to slight variation in location and orientation. This review discusses important issues concerning the accelerometry technique for estimating energy expenditure and ODBA; deriving ODBA, calibrating ODBA, acceleration logger recording frequencies, scenarios where ODBA is less likely to be valid, and the power in recording acceleration and heart rate together. While present evidence suggests that ODBA may not quantify energy expenditure during diving by birds and mammals, several recent studies have assessed changes in mechanical work in such species qualitatively through variation in ODBA during periods of submergence. The use of ODBA in field metabolic studies is likely to continue growing, supported by its relative ease of use and range of applications.  相似文献   

13.
Dispersal during juvenile life stages drives the life-history evolution and dynamics of many marine vertebrate populations. However, the movements of juvenile organisms, too small to track using conventional satellite telemetry devices, remain enigmatic. For sea turtles, this led to the paradigm of the ‘lost years'' since hatchlings disperse widely with ocean currents. Recently, advances in the miniaturization of tracking technology have permitted the application of nano-tags to track cryptic organisms. Here, the novel use of acoustic nano-tags on neonate loggerhead turtle hatchlings enabled us to witness first-hand their dispersal and behaviour during their first day at sea. We tracked hatchlings distances of up to 15 km and documented their rapid transport (up to 60 m min−1) with surface current flows passing their natal areas. Tracking was complemented with laboratory observations to monitor swimming behaviours over longer periods which highlighted (i) a positive correlation between swimming activity levels and body size and (ii) population-specific swimming behaviours (e.g. nocturnal inactivity) suggesting local oceanic conditions drive the evolution of innate swimming behaviours. Knowledge of the swimming behaviours of small organisms is crucial to improve the accuracy of ocean model simulations used to predict the fate of these organisms and determine resultant population-level implications into adulthood.  相似文献   

14.
15.
The emergence patterns of green turtle (Chelonia mydas) hatchlings on two beaches on Ascension Island, South Atlantic were monitored and related to thermal patterns in the sand at 10, 20, 30 and 40 cm depth. A total of 6001 hatchlings were recorded emerging on Long Beach, and 3171 emerged on North East Bay during the study period. No significant difference was observed in the temporal pattern of hatchling emergence among nights, or between the two beaches. Hatchling emergence predominantly occurred at night with over 93% of hatchlings emerging during the hours of darkness. Almost all hatchlings emerging in daylight suffer predation by the Ascension frigatebird (Fregata aquila). Counts of frigatebirds both above the study beaches and offshore were highest just after sunrise, with a smaller peak prior to sunset, when frigatebirds were found to predate hatchlings emerging, crawling down the beach or detected in inshore waters. The likely thermal cues controlling hatchling emergence were investigated (temperature at different depths, thermal gradients in the sand and temperature change). The most plausible thermal factor appears to be the change of temperature at superficial sand depths, with hatchling emergence inhibited when subsurface sand temperatures were increasing. This simple mechanism is likely to ensure predominantly nocturnal hatchling emergence regardless of sand albedo, seasonality or latitude as long as night is relatively cooler than day.  相似文献   

16.
Cutting-edge technologies are extremely useful to develop new workflows in studying ecological data, particularly to understand animal behavior and movement trajectories at the individual level. Although parental care is a well-studied phenomenon, most studies have been focused on direct observational or video recording data, as well as experimental manipulation. Therefore, what happens out of our sight still remains unknown. Using high-frequency GPS/GSM dataloggers and tri-axial accelerometers we monitored 25 Bonelli’s eagles Aquila fasciata during the breeding season to understand parental activities from a broader perspective. We used recursive data, measured as number of visits and residence time, to reveal nest attendance patterns of biparental care with role specialization between sexes. Accelerometry data interpreted as the overall dynamic body acceleration, a proxy of energy expenditure, showed strong differences in parental effort throughout the breeding season and between sexes. Thereby, males increased substantially their energetic requirements, due to the increased workload, while females spent most of the time on the nest. Furthermore, during critical phases of the breeding season, a low percentage of suitable hunting spots in eagles’ territories led them to increase their ranging behavior in order to find food, with important consequences in energy consumption and mortality risk. Our results highlight the crucial role of males in raptor species exhibiting biparental care. Finally, we exemplify how biologging technologies are an adequate and objective method to study parental care in raptors as well as to get deeper insight into breeding ecology of birds in general.  相似文献   

17.
During their natal dispersal hatchling sea turtles depart their nest, beach and inshore areas quickly to move into offshore developmental habitat using their finite energy stores. Patterns of fuel use and endocrine responses that could facilitate hatchling sea turtle dispersal activity are poorly understood. This study, examined aspects of intermediary metabolism by measuring plasma fuel use and an endocrine response of hatchling green turtles (Chelonia mydas) during terrestrial and aquatic activity coinciding with natal dispersal. Specifically, we measured plasma concentrations of glucose, non-esterised free fatty acids and protein to gauge the contributions of carbohydrate, lipid and protein metabolism for fuelling natal dispersal. In addition, we measured plasma levels of the steroid hormone corticosterone (CORT) a hormone implicated in regulating a number of metabolic events associated with migration and energy use in vertebrates. During terrestrial activity, hatchlings ascended through the sand from their nests and exhibited significant increases in plasma CORT and lactate indicating intense periods of anaerobic activity. During swimming, all plasma metabolites, with the exception of plasma protein, peaked between 1 and 4 h post-beginning swimming activity. Plasma CORT peaked at between 3 and 5 h of swimming activity. These plasma concentrations are consistent with intensive activity inducing catabolism of carbohydrate, lipid and protein stores to support prolonged activity. These results are similar to other vertebrates and suggest a relatively uniform cascade of physiological processes during such arduous migratory events.  相似文献   

18.
19.
20.
The choice of a suitable nest habitat by oviparous reptiles that deposit eggs into a nest and provide no subsequent parental care is likely to play a major role in the survival of the offspring. In particular variations in nest temperature may influence the rate at which embryos utilise their yolk energy.The effects of nest temperature on total energy use are however complex. High temperatures may advance development and shorten the time to hatching, thereby reducing energy use, but they also stimulate metabolic rate increasing energy use. The net effect of temperature on total energy demands is therefore uncertain.Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by open-flow respirometry during the incubation of loggerhead sea turtle eggs at three temperatures (27.6, 30.0 and 31.8 °C).At each temperature, VO2 and VCO2 showed a peak followed by a decline to hatching. Incubation temperature was negatively related to incubation duration and positively related to the maximum metabolic rate of the embryos. Peak VO2 was 74.8 ml/egg/day at 27.6 °C, 91.9 ml/egg/day at 30.0 °C, and 97.9 ml/egg/day at 31.8 °C. Peak VO2 occurred closer to hatching in eggs incubated at higher temperatures.Total energy expenditure was greatest at the lowest incubation temperature and lowest at the highest temperature. Total VO2 and VCO2 were 1777 ml/egg and 1226 ml/egg, respectively, at 27.6 °C, 1680 ml/egg and 1235 ml/egg at 30.0 °C, and 1613 ml/egg and 1191 ml/egg at 31.8 °C. Using the actual RQ values, this corresponds to a cost of development of 34,963 J/egg at 27.6 °C, 33,403 J/egg at 30.0 °C, and 32,107 J/egg at 31.8 °C.At all temperatures, the calculated respiratory quotient values did not suggest that yolk substrates were oxidised proportionately, but more likely indicated their sequential use.Nest temperatures may play a key role in energy use, with cooler temperature nests increasing the overall energy demands placed on developing embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号