首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harada N 《Chirality》2008,20(5):691-723
To determine the absolute configurations of chiral compounds, many spectroscopic and diffraction methods have been developed. Among them, X-ray crystallographic Bijvoet method, CD exciton chirality method, and the combination of vibrational circular dichroism and quantum mechanical calculations are of nonempirical nature. On the other hand, X-ray crystallography using a chiral internal reference, and 1H NMR spectroscopy using chiral anisotropy reagents are relative and/or empirical methods. In addition to absolute configurational determinations, preparations of enantiopure compounds are strongly desired. As chiral reagents useful for both the preparation of enantiopure compounds by HPLC separation and the simultaneous determination of their absolute configurations, we have developed camphorsultam dichlorophthalic acid (CSDP acid) for X-ray crystallography and 2-methoxy-2-(1-naphthyl)propionic acid (MalphaNP acid) for 1H NMR spectroscopy. In this review, the principles and applications of these X-ray and NMR methods are explained using mostly our own data.  相似文献   

2.
Kubota T  Yamamoto C  Okamoto Y 《Chirality》2002,14(5):372-376
Cyclopentyl and (+/-)-exo-2-norbornylcarbamates of cellulose and amylose were prepared and their chiral recognition abilities as chiral stationary phases for high-performance liquid chromatography (HPLC) were evaluated. Among these carbamates, cellulose tris(cyclopentylcarbamate) and amylose tris((+/-)-exo-2-norbornylcarbamate) showed particularly high chiral recognition, which is comparable to that of several well-known phenylcarbamate derivatives. The chiral recognition mechanism of cellulose tris(cyclohexylcarbamate), which was previously found to be an effective chiral stationary phase for HPLC, was investigated using NMR spectroscopy. The derivative dissolved in chloroform exhibited the chiral discrimination of several enantiomers in NMR as well as in HPLC. For example, the 1,1'-bi-2-naphthol enantiomers were distinctly discriminated in the (1)H, (13)C, and 2D-NOESY spectra.  相似文献   

3.
Tomooka K  Komine N  Nakai T 《Chirality》2000,12(5-6):505-509
The external chiral ligand-induced enantioselective [2,3]-Wittig rearrangements of crotyl benzyl ethers and crotyl propargylic ethers are described. The most notable is that treatment of (E)-crotyl propargylic ethers with a t-butyllithium/(S;S)-bis(oxazoline) complex provides a relatively high enantioselectivity (up to 89% ee), together with a high threo-diastereoselectivity. Furthermore, examples of the "asymmetric catalytic version" of the rearrangement of crotyl benzyl ethers are presented.  相似文献   

4.
《Chirality》2017,29(12):774-797
Molecular chirality is a key concept in chemistry, bioscience, and molecular technology, like the invention of a light‐powered chiral molecular motor explained in this review. Thus, the primary research subject is how to determine the absolute configuration (AC) of chiral compounds. This review article focuses on the principle, theory, and practice of the nonempirical methods for determining ACs of chiral compounds, i.e., the Bijvoet method in X‐ray crystallography and the circular dichroism (CD) exciton chirality method, together with the historical aspects of AC determination. The theoretical equations of X‐ray crystallography and exciton CD spectroscopy are explained in detail, and these equations are useful for readers to understand the principle and mechanism of these methods. This review also focuses on the relative methods, where the internal reference with known AC is used and the relative configuration is determined by X‐ray crystallography and/or 1H nuclear magnetic resonance (NMR) diamagnetic anisotropy method. In these cases, CSDP acid and MαNP acid are useful for the chiral resolution of racemic alcohols, where their diastereomeric esters are easily separable by high‐performance liquid chromatography (HPLC) on silica gel. Thus, these methods are useful for the preparation of enantiopure compounds and simultaneous determination of their ACs. In this review article, the above methods are explained mainly based on the author's own research results.  相似文献   

5.
Crown ethers are capable of complexing with primary amines and have been utilized in chromatography to separate amino acid racemates. This application has been extended to resolve (1‐amino‐1‐phenylmethyl)phosphonic acid and (1‐aminoethyl)phosphonic acid racemates, along with their aminocarboxylic acid analogs (2‐phenylglycine and alanine, respectively), via a ChiroSil RCA crown ether based chiral stationary phase. Effects of the organic modifier, temperature, and acid type and concentration on retention and selectivity were also investigated. Trends in retention and selectivity varied between aminophosponic acids and their aminocarboxylic analogs. Computer modeling and 1H NMR analyses were performed to potentially gain a better understanding of interactions of the aforementioned molecules with the ChiroSil RCA chiral stationary phase. Theoretical predictions of the most stable conformations for (R)‐ and (S)‐enantiomers were compared to elution order; it was found that the elution order agreed with molecular modeling such that the longest retention correlated with the predicted most stable complex between the enantiomer and crown ether. 1H NMR demonstrated interactions of aminophosphonic and aminocarboxylic racemates with (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid in solution and was utilized to determine enantiomeric excess of (1‐amino‐1‐phenylmethyl)phosphonic acid after its enantioenrichment via crystallization through diastereomeric salt formation with the crown ether followed by filtration. Chirality 25:369–378, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Togrul M  Turgut Y  Hoşgören H 《Chirality》2004,16(6):351-355
Chiral monoaza-15-crown-5 ethers (1, 2) were prepared from (R)-(-)-2-amino-1-butanol in high yield. The chiral monoaza-15-crown-5 ethers were purified directly as NaClO(4) complexes. Molecular recognition by these chiral monoaza-crown ethers of (R)- and (S)-PhEtHClO(4) and (R)- and (S)-NapEtHClO(4) as characterized by UV-vis spectroscopy. The order of enantiomeric selectivity is (R)- > (S)- PhEtHClO(4) and (S)- > (R)-NapEtHClO(4) for 1. In the case of 2 it was (R)- > (S)-PhEtHClO(4) and (R)- > (S)- NapEtHClO(4). The cavity of macrocycle and steric hindrance of the benzene units appears to play an important role in recognition.  相似文献   

7.
The four aldopentoses ribose, arabinose, xylose, and lyxose were evaluated to test their suitability as linear linkers for the formation of intrinsically chiral covalent organic boronic ester networks. Based on X-ray crystal structures of the reaction products with phenylboronic acid, arabinose and xylose formed boronic acid diesters. Lyxose and ribose formed monoesters under the conditions employed. NMR shielding constants were calculated by DFT methods. The results are highly correlated with the experimentally observed NMR shift values.  相似文献   

8.
The syntheses and molecular structures of six- and five-coordinated rhodium(III) corroles (by pyridines and a chiral amine, respectively) and the rhodium(I) complex of a chiral corrole are described, together with some interesting features in the NMR spectra of the complexes and their utilization as carbene-transfer catalysts.  相似文献   

9.
New chiral catalysts for reduction of ketones   总被引:2,自引:0,他引:2  
Gao JX  Zhang H  Yi XD  Xu PP  Tang CL  Wan HL  Tsai KR  Ikariya T 《Chirality》2000,12(5-6):383-388
The condensation of o-(diphenylphosphino)benzaldehyde and various chiral diamine gives a series of diimino-diphosphine tetradentate ligands, which are reduced with excess NaBH4 in refluxing ethanol to afford the corresponding diaminodiphosphine ligands in good yield. The reactivity of these ligands toward trans-RuCl2(DMSO)4 and [Rh(COD)Cl]2 had been investigated and a number of chiral Ru(II) and Rh(I) complexes with the PNNP-type ligands were synthesized and characterized by microanalysis and IR, NMR spectroscopic methods. The chiral Ru(II) and Rh(I) complexes have proved to be excellent catalyst precursors for the asymmetric transfer hydrogenation of aromatic ketones, leading to optically active alcohols in up to 97% ee.  相似文献   

10.
Aliphatic polyamines, being a versatile class of organic compounds, are widely used in many fields of medicine and organic chemistry. However, the general approach to the synthesis of chiral aliphatic polyamines has been still undeveloped. Here, we describe a new method for the synthesis of chiral trifunctional amino compounds, namely hydroxydiamines and triamines. The initial compounds, namely substituted hydroxy- or aminopyrazolidines and pyrazolines, are readily available using convenient stereoselective methods developed earlier by us. The proposed method allows synthesizing of chiral diaminoalcohols and triamines, which are the analogs of a well-known anti-TB drug, namely ethambutol, and cannot be obtained alternatively. The key step of the synthesis is N-N bond cleavage in substituted hydroxy- or aminopyrazolidines and pyrazolines with borane-tetrahydrofuran complex; other known methods for N-N bond cleavage turned out to be ineffective. The main advantage of the proposed method is the retention of a certain configuration of stereocenters in the course of the reaction. Six new chiral diasteomerically pure substituted hydroxydiamines and triamines and the enantiomerically pure triamine with four chiral centers were synthesized and characterized using NMR, IR and mass spectroscopy, as well as elemental analysis.  相似文献   

11.
A three-component chiral derivatization protocol for determining the enantiopurity of chiral diols by (1)H NMR spectroscopic analysis is described here. The present approach involves the derivatization of 1,2- 1,3- and 1,4-diols with 2-formylphenylboronic acid and enantiopure alpha-methylbenzylamine. This method affords a mixture of diastereoisomeric iminoboronate esters whose ratio can be determined by integration of well-resolved diastereotopic resonances in their (1)H NMR spectra, thus enabling the determination of the enantiopurity of the parent diol. The protocol as described takes less than 90 min to complete.  相似文献   

12.
Here, we report the general strategies by which NMR spectroscopy can be used to determine the enantiopurity and absolute configuration of chalcogen containing secondary alcohols, including the evaluation of the use of chiral solvating and chiral derivatizing agents. The BINOL/DMAP ternary complex demonstrated a simple and fast protocol for determining enantiopurity. The drug Naproxen afforded a stable, nonhygroscopic, and readily available chiral derivatizing agent (CDA) for NMR chiral discrimination of chalcogen containing secondary alcohols. The chiral recognition by CDA and chiral solvating agent (CSA) was assessed using 1H, 77Se‐{1H}, and 125Te‐{1H} NMR spectroscopy. A simple model for the assignment of the absolute configuration from NMR data is presented.  相似文献   

13.
Because of the constantly increasing demand for optically pure drugs it is of great importance to elucidate factors affecting stereochemistry, in order to provide a stable formulation with a high chiral quality of the desired isomer. Therefore, the effects of cyclodextrins (CyDs) and their alkylated and hydroxyalkylated derivatives on racemization and hydrolysis of (?)-(S)-hyoscyamine and (?)-(S)-scopolamine were examined kinetically and spectroscopically (NMR). Direct methods, based on a chiral and achiral chromatographic phase system, were used to determine their degradation products and enantiomer composition during stability tests. All different CyDs, except α-CyD, retarded racemization and hydrolysis. The inclusion of the drug substances in CyDs inhibits the attack of hydroxyl ions and/or water molecules and thus retards the racemization and hydrolysis. The racemization of the tropic acid alkaloids is dependent on the pH and temperature. NMR studies were used to evidence the formation of a soluble 1:1 complex in aqueous solution. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Citalopram (CIT) is a highly selective serotonin reuptake inhibitor (SSRI) frequently used in the treatment of major depressive disorders. It has a chiral centre in its structure and is used in therapy both as a racemic mixture (R,S-CIT) and a pure enantiomer (S-CIT). The differences between the pharmacokinetic and pharmacological profiles of the two enantiomers are well established. Consequently, the development of new efficient chiral analysis methods for their enantiomeric separation is a topic of great actuality. CIT metabolism is stereoselective as it is metabolized in chiral active metabolites, which retain considerable SSRI activity and contribute to the pharmacological effect. Chiral analytical methods are employed for the determination of enantiomeric ratio in pharmaceutical preparations and for monitoring the enantiomer levels in biological samples for therapeutic and toxicologic purposes. The current study reviews the published literature for the chiral analysis of CIT and its metabolites based on chromatographic and electrophoretic methods coupled with UV, fluorescence and mass spectrometry detectors.  相似文献   

15.
The effects of the backbone and side chain on the molecular environments in the chiral cavities of three commercially important polysaccharide-based chiral sorbents--cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), amylose tris(3,5-dimethylphenylcarbamate) (ADMPC), and amylose tris[(S)-alpha-methylbenzylcarbamate] (ASMBC)--are studied by attenuated total reflection infrared spectroscopy (ATR-IR), X-ray diffraction (XRD), 13C cross-polarization/magic-angle spinning (CP/MAS) and MAS solid-state NMR, and density functional theory (DFT) modeling. These sorbents are used widely in preparative-scale chiral separations. ATR-IR is used to determine how the H-bonding states of the C=O and NH groups of the polymer depend on the backbone and side chain. The changes in the polymer crystallinity are characterized with XRD. The changes in the polymer helicity and molecular mobility for polymer-coated silica beads (commercially called Chiralcel OD, Chirapak AD, and Chiralpak AS) are probed with 13C CP/MAS and MAS solid-state NMR. The IR wavenumbers and the NMR chemical shifts for the polymer backbone monomers and dimers and the side chains are predicted at the DFT/B3LYP/6-311+g(d,p) level of theory. It is concluded that the molecular environments of the C=O, NH, and phenyl groups show significant differences in intramolecular and intermolecular interactions and in the nanostructures of the chiral cavities of these biopolymers. These results have implications for understanding how the molecular environments of chiral cavities of these polymers affect their molecular recognition mechanisms.  相似文献   

16.
Wenzel TJ  Wenzel BT 《Chirality》2009,21(1):6-10
Diamagnetic lanthanium(III) and lutetium(III) tris beta-diketonate complexes of 3-(trifluoroacetyl)-d-camphor, 3-(heptafluorobutyryl)-d-camphor, and d,d-dicampholylmethane are shown to be effective chiral NMR shift reagents for determining the enantiomeric purity of compounds with hard Lewis base functional groups. These include substrates with amine, alcohol, epoxide, sulfoxide, and oxaxolidine moieties. Enantiomeric discrimination is observed in the (1)H NMR spectrum. Diamagnetic lanthanide complexes represent an alternative to paramagnetic varieties that often cause too much line broadening in the NMR spectra. The choice of which metal to use varies with substrate. Similarly, there is no consistent trend with ligand as not one of the complexes is consistently better than the others for all substrates. The enantiomeric discrimination also varies with solvent. Comparisons show that the chiral recognition was usually larger in benzene-d(6) than in chloroform-d or cyclohexane-d(12).  相似文献   

17.
Adio AM  König WA 《Phytochemistry》2005,66(5):599-609
The essential oil of the liverwort Plagiochila asplenioides from two different locations in Northern Germany were investigated by chromatographic and spectroscopic methods. Seven compounds were isolated by preparative gas chromatography (GC) and their structures investigated by mass spectrometry (MS), NMR techniques and chemical correlations in combination with enantioselective GC. In addition to known constituents, aromadendra-1(10),3-diene, two aromatic sesquiterpene hydrocarbons, bisabola-1,3,5,7(14)-tetraene and bisabola-1,3,5,7-tetraene, three sesquiterpene ethers, muurolan-4,7-peroxide, plagiochilines W and X, in addition to ent-4-epi-maaliol, could be identified as natural compounds for the first time.  相似文献   

18.
Welch CJ  Kress MH  Beconi M  Mathre DJ 《Chirality》2003,15(2):143-147
The enantiomers of the stereolabile peroxisome proliferator-activated receptor (PPAR) agonist, 1, were isolated by preparative chiral chromatography and their absolute configuration established using a combination of chromatographic and NMR methods. Enantiomer interconversion was investigated under a variety of conditions, with rapid racemization being observed in most solvents, including all aqueous systems studied, irrespective of pH. Rapid racemization in both dog and human plasma was confirmed by chiral HPLC with MS detection.  相似文献   

19.
Six secondary phosphine oxides and their tautomeric equilibria as free ligands and in the presence of an equimolar amount of the chiral dirhodium complex Rh* are described and discussed. Discrimination of enantiomers is easily possible by inspecting the (31)P NMR resonances; some (1)H and (13)C NMR resonances are useful as well. H/D exchange of the acidic protons in the phosphine oxides takes place with acetone-d(6), the solvent additive, after some hours but does not obscure the chiral recognition experiment. (103)Rh,(31)P coupling constants are discussed briefly. Decomposition of ligand molecules in 1:1-Rh*-adducts occurs slowly but completely.  相似文献   

20.
The compound (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was evaluated as a chiral nuclear magnetic resonance (NMR) solvating agent for a series of diamines and bicyclic β‐amino acids. The amine must be protonated for strong association with the crown ether. An advantage of (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid over many other crown ethers is that it undergoes a neutralization reaction with neutral amines to form the protonated species needed for binding. Twelve primary diamines in neutral and protonated forms were evaluated. Diamines with aryl and aliphatic groups were examined. Some are atropisomers with equivalent amine groups. Others have two nonequivalent amine groups. Association equilibria for these systems are complex, given the potential formation of 2:1, 1:1, and 1:2 crown‐amine complexes and given the various charged species in solution for mixtures of the crown ether with the neutral amine. The crown ether produced enantiomeric differentiation in the 1H NMR spectrum of one or more resonances for every diamine substrate. Also, a series of five bicyclic β‐amino acids were examined and (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid caused enantiomeric differentiation in the 1H NMR spectrum of three or more resonances of each compound. Chirality 27:708–715, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号