首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Previous in vitro research from our laboratory has demonstrated the existence of a protein purified from the chicken bursa of Fabricius, with potent antisteroidogenic and antiproliferative action on granulose cells and lymphocytes, respectively called Bursal anti-steroidogenic peptide (BASP). This protein is heat-labile, basic, and amino- and carboxy-terminus blocked. In highly purified form, the protein presents as a doublet on SDS-PAGE electrophoresis with an apparent MW of approximately 29 and approximately 32 kDa. Recently, Nanoflow Q-TOF Mass Spectrometry amino acid sequencing allowed determination of a convincing partial amino acid sequence, strongly suggesting a probable relationship of BASP with histone H1. Bursal cDNA expression library screening, using an antibody produced against BASP, also identified a clone with a sequence matching histone H1. Presently, we have demonstrated that SDS-PAGE electrophoresis of highly purified and bioactive BASP, and commercially-available calf thymus derived histone H1, produced similar doublets at approximately the same apparent MW, and that the electrophoretic profile of these 2 preparations were strikingly similar following 2 dimensional gel electrophoresis. The BASP doublet produced on SDS-PAGE was recognized by a commercially available monoclonal antibody recognizing a highly conserved region of histone H1. Furthermore, calf thymus histone H1 was found to suppress mitogen-stimulated chicken B-cell proliferation in a concentration-related manner, similar to the action of BASP. These data indicate that BASP shares substantial structural homology with, and may be identical to, histone H1.  相似文献   

3.
The HMGN proteins are a group of non-histone nuclear proteins that associate with the core nucleosome and alter the structure of the chromatin fiber. We investigated the distribution of the three best characterized HMGN family members, HMGN1, HMGN2 and HMGN3 during mouse eye development. HMGN1 protein is evenly distributed in all ocular structures of 10.5 days post-coitum (dpc) mouse embryos however, by 13.5dpc, relatively less HMGN1 is detected in the newly formed lens fiber cells compared to other cell types. In the adult, HMGN1 is detected throughout the retina and lens, although in the cornea, HMGN1 protein is predominately located in the epithelium. HMGN2 is also abundant in all ocular structures of mouse embryos, however, unlike HMGN1, intense immunolabeling is maintained in the lens fiber cells at 13.5dpc. In the adult eye, HMGN2 protein is still found in all lens nuclei while in the cornea, HMGN2 protein is mostly restricted to the epithelium. In contrast, the first detection of HMGN3 in the eye is in the presumptive corneal epithelium and lens fiber cells at 13.5dpc. In the lens, HMGN3 remained lens fiber cell preferred into adulthood. In the cornea, HMGN3 is transiently upregulated in the stroma and endothelium at birth while its expression is restricted to the corneal epithelium in adulthood. In the retina, HMGN3 upregulates around 2 weeks of age and is found at relatively high levels in the inner nuclear and ganglion cell layers of the adult retina. RT-PCR analysis determined that the predominant HMGN3 splice form found in ocular tissues is HMGN3b which lacks the chromatin unfolding domain although HMGN3a mRNA is also detected. These results demonstrate that the HMGN class of chromatin proteins has a dynamic expression pattern in the developing eye.  相似文献   

4.
The lens of the eye is a transparent structure responsible for focusing light onto the retina. It is composed of two morphologically different cell types, epithelial cells found on the anterior surface and the fiber cells that are continuously formed by the differentiation of epithelial cells at the lens equator. The differentiation of an epithelial precursor cell into a fiber cell is associated with a dramatic increase in membrane protein synthesis. How the terminally differentiating fiber cells cope with the increased demand on the endoplasmic reticulum for this membrane protein synthesis is not known. In the present study, we have found evidence of Unfolded Protein Response (UPR) activation during normal lens development and differentiation in the mouse. The ER-resident chaperones, immunoglobulin heavy chain binding protein (BiP) and protein disulfide isomerase (PDI), were expressed at high levels in the newly forming fiber cells of embryonic lenses. These fiber cells also expressed the UPR-associated molecules; XBP1, ATF6, phospho-PERK and ATF4 during embryogenesis. Moreover, spliced XBP1, cleaved ATF6, and phospho-eIF2α were detected in embryonic mouse lenses suggesting that UPR pathways are active in this tissue. These results propose a role for UPR activation in lens fiber cell differentiation during embryogenesis.  相似文献   

5.
6.
BASP1 (also known as CAP-23 and NAP-22) is a brain abundant myristoylated protein localized at the inner surface of the presynaptic plasma membrane. Emerging evidence suggests that BASP1 is critically involved in various cellular processes, in particular, in the accumulation of phosphatidylinositol-4,5-diphosphate (PIP(2)) in lipid raft microdomains. We have recently shown that BASP1 forms heterogeneously-sized oligomers and higher aggregates with an outward similarity to oligomers and protofibrils of amyloid proteins. However, BASP1 is not known to be related to any amyloid disease. In the present study, we show that BASP1 induces single channel currents across negatively-charged planar lipid bilayers (containing phosphatidylserine or PIP(2)) bathed in 0.1-0.2 M KCl (pH 7.5). By their characteristics, BASP1 channels are similar to amyloid protein channels. BASP1 channels exhibit multiple conductance levels, in the range 10-3000 pS, with the most frequently observed conductance state of approximately 50 pS. The channels demonstrate a linear current-voltage relationship and voltage-independent kinetics of opening and closing. Their K(+) to Cl(-) permeability ratio is approximately 14, indicating that BASP1 channels are cation-selective. The ion channel activity of BASP1 is in accordance with the pore-like structure of BASP1 oligomers observed by electron microscopy on a lipid monolayer. Neuronal protein GAP-43, which is functionally related to BASP1 and also forms oligomers, elicited no ion channel currents under the conditions used in the present study. Elucidation of the physiological or pathological roles of ion channel activity of membrane-bound BASP1 oligomers will help to define the precise mechanism of amyloid protein toxicity.  相似文献   

7.
Bursal anti-steroidogenic peptide (BASP), purified from the chicken bursa of Fabricius (BF), has been previously demonstrated to be a potent and efficacious inhibitor of steroid hormone biosynthesis from chicken ovarian, and both mammalian and avian adrenal cells in vitro. Other studies have demonstrated that BASP can markedly reduce avian and mammalian mitogen-stimulated lymphocyte proliferation. Recent studies have indicated that BASP has a structural and functional relationship with histone H1. Immunohistochemical studies using a monoclonal antibody, which is known to recognize a common histone H1 epitope from several plant and animal species identified the protein within the cytoplasm and nucleus of distinct cells within both the cortex and medulla of all BF follicles. Additionally, epithelial cells within the BF expressed the protein strongly in the cytoplasm with reduced nuclear staining. In contrast, the same antibody did not recognize the protein in thymus of the same animals. The differential expression of histone H1 immunoreactivity within selected cells of the BF may support a previous proposed role of histone H1 in extranuclear and extracellular signaling in chickens and possibly other species.  相似文献   

8.
9.
Bmp signaling is required for development of primary lens fiber cells   总被引:7,自引:0,他引:7  
We have investigated the role of Bmp signaling in development of the mouse lens using three experimental strategies. First, we have shown that the Bmp ligand inhibitor noggin can suppress the differentiation of primary lens fiber cells in explant culture. Second, we have expressed a dominant-negative form of the type 1 Bmp family receptor Alk6 (Bmpr1b -- Mouse Genome Informatics) in the lens in transgenic mice and shown that an inhibition of primary fiber cell differentiation can be detected at E13.5. Interestingly, the observed inhibition of primary fiber cell development was asymmetrical and appeared only on the nasal side of the lens in the ventral half. Expression of the inhibitory form of Alk6 was driven either by the alpha A-cystallin promoter or the ectoderm enhancer from the Pax6 gene in two different transgenes. These expression units drive transgene expression in distinct patterns that overlap in the equatorial cells of the lens vesicle at E12.5. Despite the distinctions between the transgenes, they caused primary fiber cell differentiation defects that were essentially identical, which implied that the equatorial lens vesicle cells were responding to Bmp signals in permitting primary fiber cells to develop. Importantly, E12.5 equatorial lens vesicle cells showed cell-surface immunoreactivity for bone-morphogenetic protein receptor type 2 and nuclear immunoreactivity for the active, phosphorylated form of the Bmp responsive Smads. This indicated that these cells had the machinery for Bmp signaling and were responding to Bmp signals. We conclude that Bmp signaling is required for primary lens fiber cell differentiation and, given the asymmetry of the differentiation inhibition, that distinct differentiation stimuli may be active in different quadrants of the eye.  相似文献   

10.
Paralemmin was identified in the chicken lens as a protein with mol. wt 65 kDa and a splice variant of 60 kDa, both soluble in Triton X-100. Paralemmin is localized to the plasma membrane of fiber cells, and was not detected in the annular pad cells. Thus in the chick lens it is another feature of fiber cell differentiation. Its localization to the short side of the fiber cell and the sites of fiber cell interlocking suggests that paralemmin may play a role in the development of such interdigitating processes.  相似文献   

11.
Ezrin and radixin and protein 4.1 were detected in the lens of the eye. These proteins were mainly present in the young elongating cortical fiber cells and localized to the plasma membranes. Moesin was not detected. Ezrin, radixin, and protein 4.1 provide another means whereby actin is linked to the plasma membrane in addition to the known adherens junctions in the lens.  相似文献   

12.
The time and place of the accumulation of alpha A-, beta B1- and gamma-crystallin RNA in the developing rat lens have been studied by in situ hybridization. alpha A- and gamma-crystallin RNA were first detected in the lens vesicle, while beta B1-crystallin RNA could be seen only after elongation of the primary fiber cells. Both beta B1- and gamma-crystallin RNA were confined to the fiber cells of fetal lenses, while alpha A-crystallin mRNA could also be detected in the epithelial cells. A quantification of the hybridization pattern obtained in the differentiation zone of the newborn rat lens showed that alpha A-crystallin RNA is concentrated in the cortical zone. alpha B-crystallin mRNA has the same distribution pattern. beta B1-crystallin RNA was relatively poorly detectable by in situ hybridization in both fetal and newborn rat lenses. The grain densities obtained with this probe increased from the periphery of the lens toward the interior, indicating that beta B1-crystallin RNA accumulated during differentiation of the secondary fiber cells. A similar accumulation pattern was obtained for gamma-crystallin mRNA, but, unexpectedly, this RNA could also be detected in the elongating epithelial cells. Our results show that gamma-crystallin RNA starts to accumulate as soon as visible elongation of epithelial cells occurs, during differentiation of the primary as well as the secondary fiber cells.  相似文献   

13.
Natural N-terminal fragments of brain abundant myristoylated protein BASP1   总被引:2,自引:0,他引:2  
BASP1 (also known as CAP-23 and NAP-22) is a novel myristoylated calmodulin-binding protein, abundant in nerve terminals. It is considered as a signal protein participating in neurite outgrowth and synaptic plasticity. BASP1 is also present in significant amounts in kidney, testis, and lymphoid tissues. In this study, we show that BASP1 is accompanied by at least six BASP1 immunologically related proteins (BIRPs), which are present in all animal species studied (rat, bovine, human, chicken). BIRPs have lower molecular masses than that of BASP1. Similarly to BASP1, they are myristoylated. Peptide mapping and partial sequencing have shown that BIRPs represent a set of BASP1 N-terminal fragments devoid of C-terminal parts of different length. In a definite species, the same set of BASP1 fragments is present in both brain and other tissues. The sum amount of the fragments is about 50% of the BASP1 amount in a tissue. Obligatory accompanying of BASP1 by a set of specific fragments indicates that these fragments are of physiological significance.  相似文献   

14.
15.
16.
The developing chicken embryo lens provides a unique model for examining the relationship between α6 integrin expression and cell differentiation, since multiple stages of differentiation are expressed concurrently at one stage of development. We demonstrate that α6 integrin is likely to mediate the inductive effects of laminin on lens differentiation as well as to function in a matrix-independent manner along the cell–cell interfaces of the differentiating cortical lens fiber cells. Both α6 isoform expression and its linkage to the cytoskeleton were regulated in a differentiation-specific manner. The association of α6 integrin with the Triton-insoluble cytoskeleton increased as the lens cells differentiated, reaching its highest levels in the cortical fiber region where the lens fiber cells are formed. In this region of the lens α6 integrin was uniquely localized along the cell–cell borders of the differentiating fiber cells, similar to β1. α6β4, the primary transmembrane protein of hemidesmosomes, is also expressed in the lens, but in the absence of hemidesmosomes. Differential expression of α6A and α6B isoforms with lens cell differentiation was seen at both the mRNA and the protein levels. RT-PCR studies demonstrated that α6B was the predominant isoform expressed both early in development, embryonic day 4, and in the epithelial regions of the day 10 embryonic lens. Isoform switching, with α6A now the predominant isoform, occurred in the fiber cell zones. Immunoprecipitation studies showed that α6B, which is characteristic of undifferentiated cells, was expressed by the lens epithelial cells but was dramatically reduced in the lens fiber zones. Expression of α6B began to drop as the cells initiated their differentiation and then dropped precipitously in the cortical fiber zone. In contrast, expression of the α6A isoform remained high until the cells became terminally differentiated. α6A was the predominant isoform expressed in the cortical fiber region. The down-regulation of α6B relative to α6A provides a developmental switch in the process of lens fiber cell differentiation.  相似文献   

17.
脊椎动物的Prox1基因,与果蝇的转录因子prospero同源。为了探讨Prox1基因在金鱼眼睛发生过程中的表达图式,我们从金鱼眼睛SMART库中克隆了Prox1cDNA。它全长共2851bp,编码739个氨基酸。组织分布研究表明,Prox1主要分布于眼、脑、心、肝、脾和肾中。整体原位杂交显示,Prox1mRNA首先是在晶体期的晶体原基中有转录,心跳期则在未成熟晶体的细胞中和视网膜的幼芽区可以检测到。晶体纤维形成后,它主要定位于视纤维层和内网织细胞层。免疫组化显示,心跳期Prox1蛋白的定位与mRNA相同,晶体纤维形成以后,Prox1蛋白主要定位在晶体上皮细胞内侧的晶体纤维上一个环状区域,与Prox1mRNA的定位不同。这说明,Prox1基因在晶体发生过程中有重要作用,且在晶体的不同发育时期起的作用可能有所不同。另外,Prox1在晶体发育过程中有一个从内向外的变化过程。  相似文献   

18.
δ-Crystallin is the principal protein synthesized in the embryonic chicken lens. After hatching δ-crystallin synthesis decreases and eventually ceases. We have determined when the δ-crystallin messenger RNA (mRNA) disappears from the lens fiber cells during the first year of age by cell-free translation of lens RNA in a reticulocyte lysate, RNA blot (Northern) hybridization, and in situ hybridization. The hybridization was performed with a nick-translated, cloned δ-crystallin cDNA (pδCr2). δ-Crystallin mRNA was present in the lens until 3 months of age and disappeared between the third and fifth month after hatching. The in situ hybridization experiments indicated that the δ-crystallin mRNA was present throughout the lens fiber mass until 1 month after hatching and was greatly reduced in the cortical fiber cells thereafter. In contrast to earlier stages, then, the cortical fiber cells differentiating at the lens equator after about 1 month of age do not accumulate δ-crystallin mRNA. The data also indicate that the maximal half-life of functional δ-crystallin mRNA in the posthatched chicken lens is about 2 months.  相似文献   

19.
The developing chicken embryo lens provides a unique model for examining the relationship between alpha6 integrin expression and cell differentiation, since multiple stages of differentiation are expressed concurrently at one stage of development. We demonstrate that alpha6 integrin is likely to mediate the inductive effects of laminin on lens differentiation as well as to function in a matrix-independent manner along the cell-cell interfaces of the differentiating cortical lens fiber cells. Both alpha6 isoform expression and its linkage to the cytoskeleton were regulated in a differentiation-specific manner. The association of alpha6 integrin with the Triton-insoluble cytoskeleton increased as the lens cells differentiated, reaching its highest levels in the cortical fiber region where the lens fiber cells are formed. In this region of the lens alpha6 integrin was uniquely localized along the cell-cell borders of the differentiating fiber cells, similar to beta1. alpha6beta4, the primary transmembrane protein of hemidesmosomes, is also expressed in the lens, but in the absence of hemidesmosomes. Differential expression of alpha6A and alpha6B isoforms with lens cell differentiation was seen at both the mRNA and the protein levels. RT-PCR studies demonstrated that alpha6B was the predominant isoform expressed both early in development, embryonic day 4, and in the epithelial regions of the day 10 embryonic lens. Isoform switching, with alpha6A now the predominant isoform, occurred in the fiber cell zones. Immunoprecipitation studies showed that alpha6B, which is characteristic of undifferentiated cells, was expressed by the lens epithelial cells but was dramatically reduced in the lens fiber zones. Expression of alpha6B began to drop as the cells initiated their differentiation and then dropped precipitously in the cortical fiber zone. In contrast, expression of the alpha6A isoform remained high until the cells became terminally differentiated. alpha6A was the predominant isoform expressed in the cortical fiber region. The down-regulation of alpha6B relative to alpha6A provides a developmental switch in the process of lens fiber cell differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号