首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-steroidal anti-inflammatory drugs (NSAIDs) treat inflammatory processes by inhibition of cycloxygenase (COX). However, their action against lipid peroxidation can be an alternative pathway to COX inhibition. Since inflammation and lipid peroxidation are cell-surface phenomena, the effects of NSAIDs on membrane models were investigated. Peroxidation was induced by peroxyl radical (ROO?) derived from AAPH and assessed in aqueous or lipid media using fluorescence probes with distinct lipophilic properties: fluorescein; HDAF and DPH-PA. The antioxidant effect of Sulindac and its metabolites was tested and related with their membrane interactions. Drug–membrane interactions included the study of: drug location by fluorescence quenching; drug interaction with membrane surface by zeta-potential measurements; and membrane fluidity changes by steady-state anisotropy. Results revealed that the active NSAID (sulindac sulphide) penetrates into the lipid bilayer and protects the membrane against oxy-radicals. The inactive forms (sulindac and sulindac sulphone) present weaker interactions with the membrane and are better radical scavengers in aqueous media.  相似文献   

2.
This work stresses the need to combine antioxidant assays and drug-membrane interaction studies to describe more accurately the antioxidant profile of non-steroidal anti-inflammatory drugs (NSAIDs). Different experiments performed in liposomes and aqueous solution were compared and used to evaluate the protective effect of etodolac in lipid peroxidation. Lipid peroxidation was induced by the peroxyl radical (ROO*) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydroxyl radical (HO*) generated by the Fenton reaction and was assessed by the fluorescence intensity decay of three fluorescence probes with distinct lipophilic properties--fluorescein; hexadecanoyl aminofluorescein (HDAF) and diphenylhexatriene propionic acid (DPHPA). Membrane fluidity changes due to lipid peroxidation were also evaluated by steady-state anisotropy measurements. Interactions of etodolac with lipid bilayers were evaluated by membrane zeta-potential measurements. Results indicate a drug location near the membrane surface and show that etodolac can scavenge the radicals studied but to a variable extent, depending on the assayed media and reactive species. The use of different probes and liposomes as membrane mimetic systems allowed us to conclude that membrane lipoperoxidation is not only related to the scavenging characteristics of the antioxidants, but also to their ability to interact with lipid bilayers.  相似文献   

3.
Abstract

This work stresses the need to combine antioxidant assays and drug–membrane interaction studies to describe more accurately the antioxidant profile of non-steroidal anti-inflammatory drugs (NSAIDs). Different experiments performed in liposomes and aqueous solution were compared and used to evaluate the protective effect of etodolac in lipid peroxidation. Lipid peroxidation was induced by the peroxyl radical (ROO?) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydroxyl radical (HO?) generated by the Fenton reaction and was assessed by the fluorescence intensity decay of three fluorescence probes with distinct lipophilic properties – fluorescein; hexadecanoyl aminofluorescein (HDAF) and diphenylhexatriene propionic acid (DPHPA). Membrane fluidity changes due to lipid peroxidation were also evaluated by steady-state anisotropy measurements. Interactions of etodolac with lipid bilayers were evaluated by membrane zeta-potential measurements. Results indicate a drug location near the membrane surface and show that etodolac can scavenge the radicals studied but to a variable extent, depending on the assayed media and reactive species. The use of different probes and liposomes as membrane mimetic systems allowed us to conclude that membrane lipoperoxidation is not only related to the scavenging characteristics of the antioxidants, but also to their ability to interact with lipid bilayers.  相似文献   

4.
Peroxidation of lipids is of significant interest owing to the evidence that peroxyl radicals and products of lipid peroxidation may be involved in the toxicity of compounds initiating a deteriorative reaction in the processing and storage of lipid-containing foods. In view of the significance of the antioxidant role of the dietary compound vitamin E and its water-soluble analogue Trolox in research of lipid-containing foods, it is desirable to determine more specifically how and where they operate its antioxidant activity in lipid membranes. In this study, unilamellar liposomes of phosphatidylcholine were used as membrane mimetic systems to estimate the antioxidant properties of vitamin E and Trolox and establish a relationship between their interactions with the membrane and their consequent antioxidant activity. Lipid peroxidation was initiated by the peroxyl radical (ROO) in lipid and aqueous media by the thermal decomposition of azocompounds and was assessed by the fluorescence intensity decay of the fluorescent probe diphenylhexatriene propionic acid. Results obtained showed that membrane lipoperoxidation is related not only to the scavenging characteristics of the compounds studied but also to their ability to interact with the lipid bilayers, and consequently liposomes provide additional information to that obtained currently from assays performed in aqueous buffer media.  相似文献   

5.
Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of free radical mediated diseases. Hence their interactions with cell membranes, which generally serve as targets for lipid peroxidation, are of enormous interest. Here we report in vitro studies, via absorption and fluorescence spectroscopy, on the effects of several flavonoids (namely fisetin, quercetin, chrysin, morin, and 3-hydroxyflavone, 3-HF) in goat RBC membranes. Owing to the presence of functionally relevant membrane protein components embedded in the lipid bilayer RBC ghosts provide a more realistic system for exploring drug actions in biomembranes than simpler membrane models like phosphatidylcholine liposomes used in our previous studies [e.g. B. Sengupta, A. Banerjee, P.K. Sengupta, FEBS Lett. 570 (2004) 77-81]. Here, we demonstrate that binding of the flavonoids to the RBC membranes significantly inhibits lipid peroxidation, and at the same time enhances their integrity against hypotonic lysis. Interestingly, the antioxidant and antihemolytic activities are found to be crucially dependent on the locations of the flavonoids in the membrane matrix as revealed by fluorescence studies. Furthermore, we observe that FRET (from membrane protein tryptophans to flavonoids) occurs with significant efficiency indicating that the flavonoid binding sites lie in close proximity to the tryptophan residues in the ghost membrane proteins.  相似文献   

6.
Studies were conducted to demonstrate 21-aminosteroid distribution into the hydrophobic or lipid domains of biological membranes, a presumed site at which these compounds inhibit lipid peroxidation. Bovine brain microvessel endothelial cells (BMECs) were labeled with diphenylhexatriene fluorophores and interactions with cell membranes characterized with fluorescence anisotropy and lifetimes. Two 21-aminosteroids (U-74500A and U74006F) were shown to preferentially alter the fluorescence anisotropy and lifetime parameters of the diphenylhexatriene probe distributing into membranes throughout the BMECs. Little or no effect of the compounds was observed on the fluorescence parameters of the probe localized on the surface of BMEC plasma membranes. By contrast, cholesterol used as a positive control substantially altered the fluorescence parameters of BMECs labeled with either diphenylhexatriene probe. Results suggest 21-aminosteroid-induced changes in the molecular packing order and drug: fluorescent probe interactions in membrane hydrophobic (or lipid) domains throughout the BMEC. Concentrations of 21-aminosteroids altering the fluorescence parameters of diphenylhexatriene labeled BMECs correspond to those concentrations of 21-aminosteroids effective in vitro in inhibition of lipid peroxidation.  相似文献   

7.
Nonsteroidal antiinflammatory drugs (NSAIDs) induce apoptosis in a variety of cancer cells, including those of colon, prostate, breast and leukemia. In addition, the classical NSAIDs sulindac and aspirin are promising chemopreventive agents against colon cancer. NSAIDs inhibit cyclooxygenases (COX) preventing the formation of prostaglandins, prostacyclin and thromboxane. NSAIDs also exert other biological effects, including generation of reactive oxygen species (ROS) and inhibition of NF-kappaB-mediated signals. Despite many suggested mechanisms for their anticancer effects, it remains uncertain how they induce cell cycle arrest and apoptosis in cancer cells. Furthermore, there is little information on the selectivity of NSAIDs-mediated anticancer effects, although this is one of the most important issues in cancer therapy. Increased understanding of the biological basis for the anticancer activity of NSAIDs and their selectivity is essential for future therapeutic advances. In this paper, we propose that increased ROS generation is one of the key mechanisms for NSAIDs-mediated anticancer effects on various cancer cells.  相似文献   

8.
The indoleamine melatonin and the synthetic antiestrogenic drug tamoxifen seem to have similar mechanisms in inhibiting the growth of estrogen receptor positive breast cancer cells. In this study, we compared the ability of these molecules, alone and in combination, in stabilizing microsomal membranes against free radical attack. Hepatic microsomes were obtained from male rats and incubated with or without tamoxifen (50–200 μm), melatonin (1 mm) or both; lipid peroxidation was induced by addition of FeCl3, NADPH and ADP. After oxidative damage, membrane fluidity, measured by fluorescence polarization techniques, decreased whereas malonaldehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations increased. Incubation of the microsomes with tamoxifen prior to exposure to free radical generating processes inhibited, in a dose-dependent manner, the increase in membrane rigidity and the rise in MDA+4-HDA levels. When melatonin was added, the efficacy of tamoxifen in preventing membrane rigidity was enhanced. Thus, the IC50s for preventing membrane rigidity and for inhibiting lipid peroxidation obtained for tamoxifen in the presence of melatonin were lower than those obtained with tamoxifen alone. Moreover, tamoxifen (50–200 μm) in the presence of melatonin reduced basal membrane fluidity and MDA+4-HDA levels in microsomes. These synergistic effects of tamoxifen and melatonin in stabilizing biological membranes may be important in protecting membranes from free radical damage. Received: 7 July 1997/Revised: 12 November 1997  相似文献   

9.
The relationships between structure and antioxidant activity of dihydrolipoic acid (DHLA) were studied using homologues of DHLA: bisonor-DHLA (a derivative which lacks two carbons in the hydrophobic tail), tetranor-DHLA (which lacks four carbons) and a methyl ester derivative. It was observed that: i) DHLA homologues with shorter hydrocarbon tails (i.e., bisnor- and tetranor-DHLA) had greater ability to quench superoxide radicals (O-2); ii) no differences among homologues with different chain lengths were found for peroxyl radical (ROO) scavenging in aqueous solution, and iii) DHLA was the best membrane antioxidant in terms of ROO scavening and lipid peroxidation inhibition. Differences among the DHLA homologues in their antioxidant properties in polar and apolar environments generally agreed with differences in their partition coefficients. The methyl ester was the least effective antioxidant both in aqueous phase and in membranes. Tetranor-DHLA was found not only to be less effective in preventing ROO-induced lipid peroxidation, but also to induce lipid peroxidation in the presence of residual iron. Thus, the complexity of biological systems seems to complicate generalizations on the correlation of molecular structure with antioxidant activity of DHLA.  相似文献   

10.
Probucol, a clinically used cholesterol lowering and antioxidant drug, was investigated for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) plus hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Fe-NTA is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA induced toxicity, which could be mitigated by probucol. Incubation of renal microsomal membrane and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.4-fold and 5.9-fold, respectively, as compared to control (P < 0.05). Induction of renal microsomal lipid peroxidation and DNA damage was inhibited by probucol in a concentration-dependent manner. In lipid peroxidation protection studies, probucol treatment showed a concentration-dependent inhibition (10-34% inhibition; P < 0.05) of Fe-NTA plus H2O2-induced lipid peroxidation as measured by thiobarbituric acid reacting species' (TBARS) formation in renal microsomes. Similarly, in DNA damage protection studies, probucol treatment also showed a concentration-dependent strong inhibition (36-71% inhibition; P < 0.05) of DNA damage. From these studies, it was concluded that probucol inhibits peroxidation of microsomal membrane lipids and DNA damage induced by Fe-NTA plus H2O2. However, because the lipid peroxidation and DNA damage studied here are regarded as early markers of carcinogenesis, we suggest that probucol may be developed as a cancer chemopreventive agent against renal carcinogenesis and other adverse effects of Fe-NTA exposure in experimental animals, in addition to being a cholesterol-lowering drug, useful for the control of hypercholestrolemia.  相似文献   

11.

Background

Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID) that affects prostaglandin production by inhibiting cyclooxygenases (COX) 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.

Principal Findings

Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP) or hydrogen peroxide. This effect does not involve cyclooxygenase (COX) inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS) within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells.

Significance

These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value.  相似文献   

12.
13.
Incubation of sheep platelet crude membranes with xanthine oxidase (XO)/hypoxanthine/Fe(2+)-ADP revealed: (i) a fast peroxidative response - with a maximal linear rate of 14 nmol malondialdehyde (MDA) equivalents/mg protein, as evidenced by the thiobarbituric acid test - and a decrease in the polyunsaturated fatty acid (PUFA) content of the platelet crude membranes; (ii) a decrease in the lipid fluidity in the deep lipid core of the membranes but not at the membrane surface; (iii) a dramatic inhibitory effect on glucose 6-phosphatase (Glc-6-Pase) but not on acetylcholinesterase activity. Platelets were also aged by storage at 4 degrees C in their own plasma or in Seto additive solution. In these media, platelet aggregates were visible and the effects on platelet phospholipids, PUFA, lipid extract fluorescence, crude membrane fluidity and membrane-bound enzyme activities were assessed for comparison with those observed in in vitro lipid peroxidation. The sensitivity of membranes from stored platelets to lipid peroxidation was also assessed. Storage of platelets in plasma for 5 days was associated with different changes in their crude membranes such as decreases in arachidonic acid contents, the decrease not being avoided by the presence of phospholipase A(2) inhibitors, increases in MDA equivalents, conjugated dienes and lipid extract fluorescence, decreases in the amounts of MDA equivalents formed by platelet crude membranes treated with the oxidizing agents, changes in membrane fluidity and inhibition of Glc-6-Pase. All these alterations were less pronounced or even abolished after platelet storage in Seto. These findings suggest that platelet lipid peroxidation due to XO/hypoxanthine/Fe(2+)-ADP and platelet membrane alterations observed after platelet ageing under storage at 4 degrees C share common features. Also, as regards the prevention of peroxidative processes, Seto solution permits better storage of sheep platelets than plasma.  相似文献   

14.
Summary

Indole-3-acetic acid (IAA) enhanced the peroxidase-induced lipid peroxidation in phosphatidylcholine liposomes, as measured by loss of fluorescence of cis-parinaric acid. α-Tocopherol or β-carotene in the lipid phase or ascorbate or Trolox in the aqueous phase inhibited the loss of fluorescence induced by the peroxidase + IAA system, but glutathione had only a small inhibitory effect. The peroxyl radical formed by one-electron oxidation of IAA, followed by decarboxylation and reaction with oxygen, is suggested to act as the initiator of lipid peroxidation. The protection by ascorbate or Trolox is explained by the reactivity of these compounds with the IAA indolyl radical, as shown by pulse radiolysis experiments, whereas the weak effect of glutathione agrees with its low reactivity towards the IAA-derived peroxyl radical and its precursors.  相似文献   

15.
Azo compounds enable us to generate peroxyl radicals by thermal decomposition at a constant rate and at a desired site, that is, water-soluble compounds produce initiating radicals in an aqueous phase and lipid-soluble compounds initiate the oxidation within the membrane-lipid layer. Using these radicals generated in different sites, we oxidized red blood cell ghost membranes to study the relationships between alpha-tocopherol depletion, initiation of lipid peroxidation, and protein damage. When radicals were generated in the aqueous phase, the loss of membrane protein thiols was observed concurrently with the consumption of membrane tocopherol and after tocopherol was exhausted the peroxidation of membrane lipids occurred. On the other hand, when radicals were initiated within the lipid region, the oxidation of thiols and the formation of thiobarbituric acid-reactive substances were suppressed to give an induction period until tocopherol fell below a critical level. Our results indicate that the surface thiols of extrinsic proteins may compete with alpha-tocopherol for trapping aqueous radicals and spare tocopherol to some extent, whereas the oxidation of intrinsic buried thiols may commence due to lipid-derived radicals produced after tocopherol was consumed. In conclusion, alpha-tocopherol in the membrane can break the free radical chain efficiently to inhibit the lipid peroxidation. However, the effect of tocopherol on the inhibition of membrane protein damage, exhibited by the loss of thiols and the formation of high-molecular-weight proteins, would be different depending on the site of initial radical generation.  相似文献   

16.
Divergent literature data are found concerning the effect of lactate on free radical production during exercise. To clarify this point, we tested the pro- or antioxidant effect of lactate ion in vitro at different concentrations using three methods: 1) electron paramagnetic resonance (EPR) was used to study the scavenging ability of lactate toward the superoxide aion (O(2)(-).) and hydroxyl radical (.OH); 2) linoleic acid micelles were employed to investigate the lipid radical scavenging capacity of lactate; and 3) primary rat hepatocyte culture was used to study the inhibition of membrane lipid peroxidation by lactate. EPR experiments exhibited scavenging activities of lactate toward both O(2)(-). and.OH; lactate was also able to inhibit lipid peroxidation of hepatocyte culture. Both effects of lactate were concentration dependent. However, no inhibition of lipid peroxidation by lactate was observed in the micelle model. These results suggested that lactate ion may prevent lipid peroxidation by scavenging free radicals such as O(2)(-). and.OH but not lipid radicals. Thus lactate ion might be considered as a potential antioxidant agent.  相似文献   

17.
The efficiencies of sinapic acid and its derivatives syringic acid, syringaldehyde, three sinapoyl esters (ethyl, propyl, butyl sinapates), 4-vinylsyringol and sinapine were investigated for prevention of lipid peroxidation in correlation with their interactions with model lipid membrane systems. Significant antioxidant activities of propyl and butyl sinapates were seen by fluorimetric assay in phosphatidylcholine liposomes as model membrane using C11-BODIPY581/591 lipophilic fluorescent probe. The sinapic acid esters also had the highest impact on membrane structural properties, as observed by differential scanning calorimetry and fluorescence polarisation measurements. The greatest protection of phospholipids from peroxidation by these esters correlated well with their polarity and insertion into the lipid bilayer.  相似文献   

18.
The anti-inflammatory effect of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with inhibition of cyclooxygenase (COX), the rate-limiting enzyme responsible for the synthesis of prostaglandins. Since oxygen free radicals can act as second cellular messengers, especially to modulate the metabolism of arachidonic acid and the prostaglandin tract, it seems plausible that antioxidants might affect the production of prostaglandin by activated cells. This research is focused on the effect of the antioxidant N-acetylcysteine (NAC) on the inhibition of prostaglandin E(2) formation in activated monocytes by specific and non-specific COX inhibitors. We found that lipopolysaccharide-induced prostaglandin E(2) formation was significantly reduced by rofecoxib and by diclofenac, two NSAIDs. Addition of NAC to each of these drugs enhanced the effect of the NSAIDs. These results suggest that one might expect either a potentiation of the anti-inflammatory effect of COX inhibitors by their simultaneous administration with NAC, or obtaining the same anti-inflammatory at lower drug levels.  相似文献   

19.
Alzheimer's disease (AD) is characterized by cerebral deposits of beta-amyloid (A beta) peptides and neurofibrillary tangles (NFT) which are surrounded by inflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD and delays the onset of the disease. It has been postulated that some NSAIDs target pathological hallmarks of AD by interacting with several pathways, including the inhibition of cyclooxygenases (COX) and activation of the peroxisome proliferator-activated receptor gamma. A variety of experimental studies indicate that a subset of NSAIDs such as ibuprofen, flurbiprofen, indomethacin and sulindac also possess A beta-lowering properties in both AD transgenic mice and cell cultures of peripheral, glial and neuronal origin. While COX inhibition occurs at low concentrations in vitro (nM-low microm range), the A beta-lowering activity is observed at high concentrations (< or = 50 microm). Nonetheless, studies with flurbiprofen or ibuprofen in AD transgenic mice show that the effects on A beta levels or deposition are attained at plasma levels similar to those achieved in humans at therapeutic dosage. Still, it remains to be assessed whether adequate concentrations are reached in the brain. This is a crucial aspect that will allow defining the dose-window and the length of treatment in future clinical trials. Here, we will discuss how the combination of anti-amyloidogenic and anti-inflammatory activities of certain NSAIDs may produce a profile potentially relevant to their clinical use as disease-modifying agents for the treatment of AD.  相似文献   

20.
Cyclooxygenase (COX) catalysis by prostaglandin H synthase (PGHS) is a key control step for regulation of prostanoid biosynthesis. Both PGHS isoforms are integral membrane proteins and their substrate fatty acids readily partition into membranes, but the impact of phospholipids and lipid membranes on COX catalysis and the actions of COX inhibitors are not well understood. We have characterized the COX kinetics and ibuprofen inhibition of the purified PGHS isoforms in the presence of phosphatidylcholine (PC) with varying acyl chain structure and physical state. PC was found to directly inhibit COX activity, with non-competitive inhibition by PC monomers binding away from the COX active site and competitive inhibition by micellar/bilayer forms of PC due to sequestration of the arachidonate substrate. Competitive inhibition by native membranes was observed in a comparison of COX kinetics in sheep seminal vesicle microsomes before and after solubilization of PGHS-1. PC liposomes significantly increase the inhibitory potency of ibuprofen against both PGHS isoforms without changing the reversible character of ibuprofen action or requiring binding of PGHS to the liposomes. These results suggest a useful conceptual framework for analyzing the complex interactions among the PGHS proteins, substrates, inhibitors and phospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号