首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dynamic, complex relationship exists between tumor cells and their microenvironment, which plays a pivotal role in cancer progression, yet remains poorly understood. Particularly perplexing is the finding that aggressive melanoma cells express genes associated with multiple cellular phenotypes, in addition to their ability to form vasculogenic-like networks in three-dimensional matrix--called vasculogenic mimicry, which is illustrative of tumor cell plasticity. This study addressed the unique epigenetic effect of the microenvironment of aggressive melanoma cells on the behavior of poorly aggressive melanoma cells exposed to it. The data show significant changes in the global gene expression of the cells exposed to 3-D matrices preconditioned by aggressive melanoma cells, including the acquisition of a vasculogenic cell phenotype, upregulation of ECM remodeling genes, and increased invasive ability--indicative of an epigenetic, microenvironment-induced reprogramming of poorly aggressive melanoma cells. However, this epigenetic effect was completely abrogated when a highly cross-linked collagen matrix was used, which could not be remodeled by the aggressive melanoma cells. These findings offer an unique perspective of the inductive properties associated with an aggressive melanoma microenvironment that might provide new insights into the epigenetic regulation of tumor cell plasticity and differentiation, as well as mechanisms that could be targeted for novel therapeutic strategies.  相似文献   

2.
Melanoma cells actively participate in tumor angiogenesis and vasculogenic mimicry. However, anti-angiogenic therapy in patients with melanoma has not shown a significant survival gain. Thus, new anti-melanoma angiogenic and vasculogenic drugs are highly desired. Using the metastatic melanoma cell line C8161 as a model, we explored melanoma vasculogenic inhibitors and found that lycorine hydrochloride (LH) effectively suppressed C8161 cell-dominant formation of capillary-like tubes in vitro and generation of tumor blood vessels in vivo with low toxicity. Mechanistic studies revealed that LH markedly hindered expression of VE-cadherin in C8161 cells, but did not affect expression of six other important angiogenic and vasculogenic genes. Luciferase assays showed that LH significantly impeded promoter activity of the VE-cadherin gene in a dose-dependent manner. Together, these data suggest that LH inhibits melanoma C8161 cell-dominant vasculogenic mimicry by reducing VE-cadherin gene expression and diminishing cell surface exposure of the protein.  相似文献   

3.
4.
Cancer stem cells and human malignant melanoma   总被引:1,自引:0,他引:1  
Cancer stem cells (CSC) have been identified in hematological malignancies and several solid cancers. Similar to physiological stem cells, CSC are capable of self-renewal and differentiation and have the potential for indefinite proliferation, a function through which they may cause tumor growth. Although conventional anti-cancer treatments might eradicate most malignant cells in a tumor, they are potentially ineffective against chemoresistant CSC, which may ultimately be responsible for recurrence and progression. Human malignant melanoma is a highly aggressive and drug-resistant cancer. Detection of tumor heterogeneity, undifferentiated molecular signatures, and increased tumorigenicity of melanoma subsets with embryonic-like differentiation plasticity strongly suggest the presence and involvement of malignant melanoma stem cells (MMSC) in the initiation and propagation of this malignancy. Here, we review these findings in the context of functional properties ascribed to melanocyte stem cells and CSC in other cancers. We discuss the association of deregulated signaling pathways, genomic instability, and vasculogenic mimicry phenomena observed in melanoma subpopulations in light of the CSC concept. We propose that a subset of MMSC may be responsible for melanoma therapy-resistance, tumor invasiveness, and neoplastic progression and that targeted abrogation of a MMSC compartment could therefore ultimately lead to stable remissions and perhaps cures of metastatic melanoma.  相似文献   

5.
Vasculogenic mimicry was first described as the unique ability of aggressive melanoma cells to express an endothelial phenotype and to form vessel-like networks in three dimensional cultures, “mimicking” the pattern of embryonic vascular networks and recapitulating the patterned networks seen in patients with aggressive tumors correlated with poor prognosis. Recent work shows the occurrence of alternative vasculogenic patterns is due to the presence of stem cell population (cancer stem cells, CSC) at least in melanoma and glioblastoma. In the present review the new perspectives to target vasculogenic mimicry for an anti-vascular treatment strategy and the possible use of AQP1 as target, are discussed. Interest in AQP1 as a target arises from the pivotal role it plays in the organisation of vascular network affecting the cytoskeleton.  相似文献   

6.
7.
Solid tumor growth is dependent on the development of an adequate blood supply. For years, sprouting angiogenesis has been considered as the exclusive mechanism of tumor vascularization. However, in recent years, another mechanism of tumor vascularization has been identified that does not involve endothelial cells, a process called vasculogenic mimicry (VM). VM describes the unique ability of highly aggressive tumor cells to form vessel-like networks by virtue of their high plasticity. VM has been observed in several tumor types, and its occurrence is strongly associated with poor prognosis. This review focuses on signaling molecules and cascades involved in VM. In addition, the clinical significance of VM regardless of anti-angiogenesis treatment modalities is described.  相似文献   

8.
Angioarchitecture of primary oral malignant melanomas.   总被引:6,自引:0,他引:6  
Angiogenesis is an essential process in the progression of malignant tumors. However, little is known of the angioarchitecture in primary oral malignant melanoma. We sought to determine this by the use of periodic acid-Schiff (PAS) stain, endothelial markers (CD34, CD105) and laminin, and by transmission electron microscopy in two cases. The results demonstrated that endothelium-lined vessels dominated the tumor microvasculature and these stained positively for PAS, laminin, and endothelial markers. Mosaic and tumor-lined vessels were infrequently encountered. Most PAS-positive patterned networks and loops ultrastructurally represented intratumor microhemorrhages that probably arose secondary to tumor vessel leakiness. Vascular channels of the vasculogenic mimicry type were rare. They stained for laminin but not for endothelial markers.  相似文献   

9.
We report the generation of a transgenic Tie2-GFP athymic nude mouse, carrying green fluorescent blood vessels throughout the body. This transgenic mouse is a tool for studies in vascular biology, and is especially of interest for imaging of tumor angiogenesis and the study of anti-angiogenesis strategies in (human) xenografts. Intravital microscopy identified the presence of blood conducting structures that are not lined by endothelial cells. Dedifferentiation of aggressive tumor cells can lead to acquisition of endothelial characteristics. This process of tumor cell plasticity, also referred to as vasculogenic mimicry, has been suggested to contribute to the circulatory system in a tumor. In plastic EW7 Ewing sarcoma tumors in these Tie2-GFP mice, we observed blood flow in both regular blood vessels and non-fluorescent tumor cell-lined channels, visualizing in vivo hemodynamics in vasculogenic channels. These results demonstrate that the transgenic Tie2-GFP athymic mouse model is a valuable tool for vascular biology research.  相似文献   

10.
Recent studies have shown that a loss of methylthioadenosine phosphorylase (MTAP) gene expression exerts a tumor‐promoting effect, including induction of invasiveness, enhanced cell proliferation, and resistance against cytokines. To date, the molecular mechanisms underlying these effects remain unknown. Since the loss of MTAP expression resulted in induced secretion of 5′‐deoxy‐5′‐(methylthio)adenosine (MTA), we hypothesized that MTA might modulate the observed effects. We first determined MTA levels produced by tumor cells in vitro and in situ by means of stable isotope dilution liquid chromatography tandem mass spectrometry. Subsequently, we revealed induction of matrix metalloproteinase (MMP) and growth factor gene expression in melanoma cells accompanied by enhanced invasion and vasculogenic mimicry. In addition, MTA induced the secretion of basis fibroblast growth factor (bFGF) and MMP3 from fibroblasts and the upregulation of activator protein‐1 (AP‐1) activity in melanoma cells and fibroblasts. In summary, we demonstrated a tumor‐supporting role of MTA. J. Cell. Biochem. 106: 210–219, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell–EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.  相似文献   

12.
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770–5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770–5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.  相似文献   

13.
《Translational oncology》2022,15(12):101237
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770–5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770–5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.  相似文献   

14.
《Translational oncology》2021,14(12):101237
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770–5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770–5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.  相似文献   

15.
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.  相似文献   

16.
17.
PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.  相似文献   

18.
Doxycycline influences microcirculation patterns in B16 melanoma   总被引:3,自引:0,他引:3  
To examine the effects of doxycycline on invasion-related protein expression and proliferation of melanoma cells and to evaluate its effect on microcirculation patterns in melanoma, we injected murine melanoma B16 cell suspensions into the groin areas of C57BL/6 mice that were randomly divided into treatment and control groups. Eight days after tumor cell injection, we administered doxycycline intraperitoneally (ip) at a dose of 0.15 mg/g/day in the treatment group and administered a physiological saline solution to the control group. Animals were sacrificed on Day 22, and we removed and weighed tumor masses and counted the numbers of vasculogenic mimicry (VM) and endothelium-dependent vessels. Immunohistochemical staining was used to analyze the expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA). We prepared protein extracts of the tumors, and we examined the activity of MMP-2 and MMP-9 in different groups by gelatin zymography. Real-time polymerase chain reaction (PCR) was used to detect MMP-2 and MMP-9 mRNA level in the fresh tumor tissue. Doxycycline treatment partly suppressed the growth of engrafted B16 melanoma, with an inhibition rate of 35.63%. There were more VM and endothelium-dependent vessels in the control group than in the treatment group. The expression level of MMP-2 and MMP-9 in the treatment group was lower than that in the control group (P < 0.01, P < 0.05). Compared with the control group, VEGF expression was increased with doxycycline treatment. The enzyme activities of MMP-9, active-MMP-2, and MMP-2/pro-MMP-2 in the treatment group were lower than those in the control group (P < 0.01). MMP-2 and MMP-9 mRNA levels in the treatment group were also lower than those in the control group were. Doxycycline inhibits the growth of engrafted melanoma and results in reduced expression of MMP-2, MMP-9, and VM formations.  相似文献   

19.
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.  相似文献   

20.
Increasing evidence has suggested that gliomas can supply blood through vasculogenic mimicry. In this study, the expression and function of ZNRD1-AS1-144aa-uORF (144aa-uORF) and some non-coding RNAs in gliomas were assessed. Real-time quantitative PCR or Western blot was used to discover the expression of 144aa-uORF, ZNRD1-AS1, miR-499a-5p, ELF1 and EMI1 in gliomas. In addition, RIP and RNA pull-down assays were applied to explore the interrelationship between 144aa-uORF and ZNRD1-AS1. The role of the 144aa-uORF\ZNRD1-AS1\miR-499a-5p\ELF1\EMI1 axis in vasculogenic mimicry formation of gliomas was analysed. This study illustrates the reduced expression of the 144aa-uORF in glioma tissues and cells. Up-regulation of 144aa-uORF inhibits proliferation, migration, invasion and vasculogenic mimicry formation within glioma cells. The up-regulated 144aa-uORF can increase the degradation of ZNRD1-AS1 through the nonsense-mediated RNA decay (NMD) pathway. Knockdown of ZNRD1-AS1 inhibits vasculogenic mimicry in glioma cells by modulating miR-499a-5p. At the same time, miR-499a-5p is down-regulated and has a tumour-suppressive effect in gliomas. In addition, ZNRD1-AS1 serves as a competitive endogenous RNA (ceRNA) and regulates the expression of ELF1 by binding to miR-499a-5p. Notably, ELF1 binds to the promoter region of EMI1 and up-regulates EMI1 expression, while simultaneously promoting vasculogenic mimicry in glioma cells. This study suggests that the 144aa-uORF\ZNRD1-AS1\miR-499a-5p\ELF1\EMI1 axis takes key part in regulating the formation of vasculogenic mimicry in gliomas and may provide a potential target for glioma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号