首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The two human alpha-globin genes, alpha 1 and alpha 2, are coexpressed in normal erythroid cells and encode identical alpha-globin protein products. Based upon genetic studies, it has been assumed that these two adjacent and highly homologous genes are equally expressed. In previous studies we have, however, demonstrated that the alpha 2 gene encodes a 2-3-fold higher steady state level of mRNA than the alpha 1 gene. In the present study, we monitor the relative levels of protein production from these two loci by quantitating the synthesis of specific alpha-globin structural mutants encoded by each alpha-globin gene. These values are then used to infer the relative contributions of the normal alpha 1 and alpha 2 loci to total alpha-globin production. The results of eight separate studies, each based upon a different alpha-globin structural mutant mapped to either the alpha 1 or the alpha 2 locus, are internally consistent. The data demonstrate that the alpha 2 gene encodes 2-3-fold more protein than the alpha 1 gene. These results suggest that the human alpha-globin gene cluster contains a major and a minor locus. The dominant expression of the alpha 2 gene predicts a greater impact of mutations at this locus, in comparison to mutations at the alpha 1 locus, in the generation of the alpha-thalassemia phenotype.  相似文献   

4.
5.
6.
7.
Ren L  Wang Y  Shi M  Wang X  Yang Z  Zhao Z 《PloS one》2012,7(2):e31416
Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF) is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C) methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C) and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.  相似文献   

8.
9.
10.
11.
12.
The globin gene family of Xenopus laevis comprises pairs of closely related genes that are arranged in two clusters, each pair of genes being co-ordinately and stage-specifically expressed. To get information on putative regulatory elements, we compared the DNA sequences and the chromatin conformation 5' to the co-ordinately expressed adult alpha-globin genes. Sequence analysis revealed a relatively conserved region from the cap site up to position -289, and further upstream seven distinct boxes of homology, separated by more diverged sequences or deletions/insertions. The homology boxes comprise 22 to 194 base-pairs showing 78 to 95% homology. Analysis of chromatin conformation showed that DNase I preferentially cuts the upstream region of both genes at similar positions, 5' to the T-A-T-A and the C-C-A-A-T boxes, only in chromatin of adult erythroblasts and erythrocytes, where adult globin genes are expressed, but not in chromatin of adult liver cells or larval erythrocytes, where these genes are silent. This suggests that cell- and stage-specific activation of these genes coincides with specific changes in chromatin conformation within the proximal upstream region. No difference was found in the nucleotide sequence within the DNase I hypersensitive region proximal to the adult alpha 1-globin gene in DNA from embryonic cells, in which this gene is inactive, and adult erythrocytes, expressing this gene.  相似文献   

13.
14.
15.
alpha-thalassaemia is an inherited blood disorder caused by a decrease in the synthesis of alpha-globin due to mutations in one or both of the alpha-globin genes located on human chromosome 16. A 191 kb transgene derived from a sequenced bacterial artificial chromosome (BAC) clone carrying the human alpha-globin gene cluster, together with about 100 kb of sequence upstream of DNase1 hypersensitive site HS-40 and 30 kb downstream of the alpha1-globin gene, was introduced into fertilised mouse oocytes by pronuclear microinjection. Three transgenic founder mice were obtained. Analysis of one transmitting line by fluorescent in situ hybridisation and quantitative PCR demonstrated a single copy integration of the human alpha-globin transgene on chromosome 1. Analysis of haemoglobins from the peripheral blood by cellulose acetate electrophoresis and high performance liquid chromatography (HPLC) demonstrated synthesis of human alpha-globin to about 36% of the level of each mouse alpha-globin locus. Breeding of transgenic mice with mice heterozygous for a knockout (KO) deletion of both murine alpha-globin genes showed that the human alpha-globin locus restored haemoglobin levels and red cell distribution width to normal in double heterozygous mice and significantly normalised other haematological parameters. Interestingly the human transgene also induced a significant increase in red cell production and haematocrit above wild type values. This is the first report demonstrating complementation of a murine alpha-globin KO mutation by human alpha-globin gene expression from an intact human alpha-globin locus. The transgenic mouse model described in this report should be very useful for the study of human alpha-globin gene regulation and for the development of strategies to down regulate alpha-globin production as a means of ameliorating the severity of beta-thalassaemia.  相似文献   

16.
Long-distance regulatory elements and local chromatin structure are critical for proper regulation of gene expression. Here we characterize the chromatin conformation of the chicken α-globin silencer-enhancer elements located 3′ of the domain. We found a characteristic and erythrocyte-specific structure between the previously defined silencer and the enhancer, defined by two nuclease hypersensitive sites, which appear when the enhancer is active during erythroid differentiation. Fine mapping of these sites demonstrates the absence of a positioned nucleosome and the association of GATA-1. Functional analyses of episomal vectors, as well as stably integrated constructs, revealed that GATA-1 plays a major role in defining both the chromatin structure and the enhancer activity. We detected a progressive enrichment of histone acetylation on critical enhancer nuclear factor binding sites, in correlation with the formation of an apparent nucleosome-free region. On the basis of these results, we propose that the local chromatin structure of the chicken α-globin enhancer plays a central role in its capacity to differentially regulate α-globin gene expression during erythroid differentiation and development.  相似文献   

17.
We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis-acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10–1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis-regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster.  相似文献   

18.
Using native chromatin immunoprecipitation (N-ChIP) followed by TaqMan RT-PCR quantitative analysis we have determined the profiles of histone acetylation and histone methylation within the alpha-globin gene domain before and after switching of embryonic globin genes expression. The results obtained do not support a supposition that the inactivation of the embryonic alpha-type globin gene pi in erythroid cells of the adult lineage is mediated via formation of an inactive chromatin domain. On the other hand we have demonstrated that suppression of the gene pi activity in erythroid cells of adult lineage correlates with the decrease of the histone acetylation level within the embryonic subdomain of the alpha-globin gene domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号