首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Kurtz  J. Ausi  M. Chiva 《Tissue & cell》2009,41(5):334-344
An interesting characteristic of decapod crustacean sperm nuclei is that they do not contain highly packaged chromatin. In the present study we re-examine the presence of DNA-interacting proteins in sperm nuclei of the brachyuran Maja brachydactyla. Although previous reports have indicated that, unlike the majority of sperm cells, DNA of decapod sperm is not organized by basic proteins, in this work we show that: (1) histones are present in sperm of M. brachydactyla; (2) histones are associated with sperm DNA; (3) histone H3 appears in lower proportions than the other core histones, while histone H2B appears in higher proportions; and (4) histone H3 in sperm nuclei is acetylated. This work complements a previous study of sperm histones of Cancer pagurus and supports the suggestion that decapod crustacean sperm chromatin deserves further attention.  相似文献   

2.
Template activating factor-I (TAF-I) is a histone-binding chromatin remodeling factor. We recently found that TAF-I is capable of mediating decondensation of Xenopus sperm chromatin by releasing sperm-specific basic proteins. Here we present evidence that TAF-I preferentially binds to histone H3 among four core histones. Immunofluorescent staining revealed that TAF-I binds to the decondensed sperm chromatin, of which protein components predominantly consist of histones H3 and H4.  相似文献   

3.
Most of the DNA in the sperm of the bivalve mollusc. Spisula solidissima, is found to be associated with a specific high-molecular-mass, protamine-like component, sharing features common both to protamines and to histones. We have found that this component coexists, in the mature sperm nucleus, with a complete set of histones, including an H1-like histone. Such histones account for approximately 20% of the whole protein content in the sperm chromatin, the overall protein/DNA ratio (w/w) being 0.87. These data, together with micrococcal nuclease digestions in combination with salt fractionation, have allowed us to propose a structural model for this chromatin in which short nucleosomal domains are interspersed in a highly saturated protamine-DNA complex.  相似文献   

4.
The morphogenesis of sperm nuclei was investigated in six different species or subspecies of the genus Xenopus (Pipidae, Anura). The sequence of nuclear morphogenesis was similar in each species used in this study. Electrophoretic comparison of the basic chromatin proteins from late spermatids and sperm of each species demonstrated that the complements of histones and spermatid-sperm-specific basic proteins were extremely diverse suggesting that shape was not determined by specific basic proteins or mechanisms of histone removal. This conclusion was reinforced by the observation that Xenopus sperm DNA decondensed by 2.0 M NaCl remained contrained in residual structures which resembled intact sperm nuclei. These observations suggested that morphogenesis of sperm nuclei is directed by proteins or RNA molecules which are not directly responsible for chromatin condensation.  相似文献   

5.
Amino acid analyses of nuclear basic proteins of an anuran amphibian, Rana catesbeiana, revealed that they are comprised of a full set of core histones and three types of lysine-rich, sperm-specific proteins. On the basis of their amino-acid compositions and partial amino-acid sequences of their trypsin-resistant cores, the sperm-specific proteins could be defined as members of the histone H1 family. Both micrococcal nuclease digestion and electron microscopy indicated that sperm chromatin consists of nucleosomal and fibrillar DNA structures which are irregularly interspersed with each other. When sperm nuclei were incubated with nucleoplasmin, nuclei decondensed to some extent, and the sperm-specific H1s were removed, but not completely. The residual sperm-specific histone H1 variants were also found in reconstituted male pronuclear chromatin, comprising regularly spaced nucleosomes. We conclude that sperm-specific histone H1 variants are essential for chromatin condensation in the sperm nuclei, but that their complete removal is not necessary for the remodeling into somatic chromatin that takes place after fertilization. Mol. Reprod. Dev. 47:181–190, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Using high performance liquid chromatography we have successfully purified four core histones from mature human sperm chromatin. The H2A variants present in sperm (H2A.X and limited H2A.Z) have been shown previously to be minor variants in somatic chromatin. The histones are highly modified as evidenced by extensive acetylation and an as yet uncharacterized multicharge modification of H2B. Based on our data, we conclude that histone proteins are a minor component of each mature spermatozoa. Given the unique nature of the histone variants present in sperm, we propose that this chromatin component has a specific function and may possibly facilitate the programming of genes which will be active in early development.  相似文献   

7.
Protamine-like proteins constitute a group of sperm nuclear basic proteins that have been shown to be related to somatic linker histones (histone H1 family). Like protamines, they usually replace the chromatin somatic histone complement during spermiogenesis; hence their name. Several of these proteins have been characterized to date in invertebrate organisms, but information about their occurrence and characterization in vertebrates is still lacking. In this sense, the genus Mullus is unique, as it is the only known vertebrate that has its sperm chromatin organized by virtually only protamine-like proteins. We show that the sperm chromatin of this organism is organized by two type I protamine-like proteins (PL-I), and we characterize the major protamine-like component of the fish Mullus surmuletus (striped red mullet). The native chromatin structure resulting from the association of these proteins with DNA was studied by micrococcal nuclease digestion as well as electron microscopy and X-ray diffraction. It is shown that the PL-I proteins organize chromatin in parallel DNA bundles of different thickness in a quite distinct arrangement that is reminiscent of the chromatin organization of those organisms that contain protamines (but not histones) in their sperm.  相似文献   

8.
9.
During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis) is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae). The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin.  相似文献   

10.
K Marushige  Y Marushige  T K Wong 《Biochemistry》1976,15(10):2047-2053
Displacement of histones from calf thymus chromatin has been studied in an attempt to postulate the mechanisms involved in the total removal of somatic-type histones during transformation of spermatid chromatin. When chromatin is saturated with protamine (protamine/DNA, 0.5), histone I becomes displaceable at 0.15-0.3 M NaCl, suggesting that direct replacement by highly basic sperm histone could be a mechanism for its removal. While histone I is the only histone which is extensively degraded upon incubation of chromatin and, therefore, proteolysis might provide an additional mechanism for the removal of this histone, acetylation of chromatin by acetic anhydride greatly increases suscpetibility of histones IIb1, IIb2, and III to the chromosomally associated protease. These histones are extensively degraded and displaced from the DNA upon incubation of the acetylated chromatin. Although histone IV is not appreciably degraded, the proteolytic removal of acetylated histone III from chromatin weakens the interaction of acetylated histone IV to the DNA, and this histone becomes dissociable at 0.3 M NaCl. A comparison of the extent of chemical acetylation of individual histones observed in this investigation with that of enzymatic acetylation which can be achieved in vivo suggests that acetylation and proteolysis could be a mechanism for the removal of histone IIb2 and III. The displacement of histones IIb1 and IV could be explained on the basis of decreased binding to DNA as a result of their acetylation together with the proteolytic removal of their respective partner histones, IIb2 and III.  相似文献   

11.
Electrophoretic mobility, amino acid composition and salt dissociation of histones isolated from sperm of sea urchin Strongylocentrotus intermedius and calf thymus cells were studied. The special arginine-rich histone fraction (I) has been observed in sea urchin sperm chromatin, this fraction being absent in calf thymus chromatin. Dissociation of lysine-containing histone fractions from sea urchin chromatin occured in the range of 0.7 to 1.0 M NaCl concentrations. H1 of calf thymus chromatin was totally extracted with 0.6 M NaCl. In the course of a further increase of salt concentrations (up to 1.5 M NaCl) a practically total extraction of histones from sperm chromatin was observed, while about 20% of proteins remained bound to DNA in thymus chromatin after extraction with 2.0 M NaCl. The template activity of non-extracted DNP preparations from urchin sperm was equal to 2-3% of that of totally deproteinized DNA. The template activity of DNP gradually increased at protein extraction from DNP preparations. The hybridization capacity of RNA transcribed on partially dehistonized DNP templates in vitro also increased.  相似文献   

12.
13.
14.
Despite the identification of H2A.Bbd as a new vertebrate-specific replacement histone variant several years ago, and despite the many in vitro structural characterizations using reconstituted chromatin complexes consisting of this variant, the existence of H2A.Bbd in the cell and its location has remained elusive. Here, we report that the native form of this variant is present in highly advanced spermiogenic fractions of mammalian testis at the time when histones are highly acetylated and being replaced by protamines. It is also present in the nucleosomal chromatin fraction of mature human sperm. The ectopically expressed non-tagged version of the protein is associated with micrococcal nuclease-refractory insoluble fractions of chromatin and in mouse (20T1/2) cell line, H2A.Bbd is enriched at the periphery of chromocenters. The exceedingly rapid evolution of this unique X-chromosome-linked histone variant is shared with other reproductive proteins including those associated with chromatin in the mature sperm (protamines) of many vertebrates. This common rate of evolution provides further support for the functional and structural involvement of this protein in male gametogenesis in mammals.  相似文献   

15.
The structural organization of mature sperm chromatin from three representatives of theMytilidae family has been studied. The acid-soluble proteins in these species nuclei are primarily sperm-specific (approximately 80%) with the remainder being core histones. Previously, we have shown that the mature sperm nuclei of these molluscs are compact, dense structures formed by interaction of the spermspecific proteins with DNA (1). Here we show that: a) although the histones are minor chromatin protein fraction, they still organize a part (20–25%) of the total DNA into nucleosomes; b) one of the sperm-specific proteins, different from somatic H1 or H5 histones participates in the formation of the beaded structures.  相似文献   

16.
G R Green  D L Poccia 《Biochemistry》1988,27(2):619-625
Several physical properties of sea urchin spermatid chromatin, which contains phosphorylated Sp H1 and Sp H2B histone variants, and mature sperm chromatin, in which these histones are dephosphorylated, were compared. Density, thermal stability, average nucleosomal repeat length, and resistance to micrococcal nuclease digestion are all increased in mature sperm relative to spermatid chromatin. Since the chromatins are identical in histone variant subtypes, the altered physical properties are not a consequence of changes in histone primary structure during spermiogenesis. The data are interpreted to mean that dephosphorylation of the N-terminal regions of Sp H1 and Sp H2B in late spermatid nuclei permits strong ionic binding of these highly basic regions to the extended linker, stabilizing the highly condensed structure of sperm chromatin.  相似文献   

17.
Changes of chromosomal basic proteins of rats have been followed during transformation of spermatids into spermatozoa in the testis and during maturation of spermatozoa in the epididymis. Rat testis chromatin has been fractionated on the basis of differing sensitivity to shearing, yielding a soluble fraction and a condensed fraction. The sperm histone is found in the condense fraction. Somatic-type histones are found in both fractions. The somatic-type histones in the condensed fraction contains much more lysine-rich histone I, than does the somatic-type histones in the soluble fraction. This may suggest that the lysine-rich histone I is the last histone to be displaced during the replacement of somatic-type histones by sperm histone. After extensive shearing followed by sucrose centrifugation, the condensed portion of testis chromatin can be further fractionated into two morphologically distinctive fractions. One is a heavy fraction possessing an elongated shape typical of the head of late spermatids. The other is a light fraction which is presumably derived from spermatids at earlier stages of chromatin condensation and which is seen as a beaded structure in the light microscope. Sperm histone of testis chromatin can be extractable completely by guanidinium chloride without a thiol, wheras 2-mercaptoethanol is required for extraction of sperm histone from caput and cauda epididymal spermatozoa. The light fraction of the condensed testis chromatin contains unmodified and monophospho-sperm histone. The sperm histones of the heavy fraction is mainly of monophospho and diphospho species, whereas unmodified and monophosphosperm histones are found in caput and cauda epididymal spermatozoa. Labeling of cysteine sulfhydryl groups of sperm histone releases by 2-mercaptoethanol treatment shows that essentially all of the cysteine residues of sperm histone in testis chromatin are present as sulfhydryl groups, while those of sperm histone isolated from mature (cauda epididymal) spermatozoa are present as disulfide forms and approximately 50% of the cysteine residues of sperm histone obtained from caput epididymal spermatozoa are in disulfide forms. These results suggest that phosphorylation of sperm histone is involved in the process of chromatin condensation during transformation of spermatozoa in the epididymis.  相似文献   

18.
Most DNA in human sperm is bound to highly basic proteins called protamines, but a small proportion is complexed with histones similar to those found in active chromatin. This raises the intriguing possibility that histones in sperm are marking sets of genes that will be preferentially activated during early development. We have examined the chromatin structure of members of the β-globin gene family, which are expressed at different times in development, and the protamine 2 gene, which is expressed in spermatids prior to the widespread displacement of histones by transition proteins. The genes coding for and γ globin, which are active in the embryonic yolk sac, contain regions which are histone associated in the sperm. No histone-associated regions are present at the sites tested within the β- and δ-globin genes which are silent in the embryonic yolk sac. The trends of histone or protamine association are consistent for samples from the same person, and no significant between-subject variations in these trends are found for 13 of the 15 fragments analyzed in the two donors. The results suggest that sperm chromatin structures are generally similar in different men but that the length of the histone-associated regions can vary. The association of sperm DNA with histones or protamines sometimes changes within as little as 400 bp of DNA, suggesting that there is fine control over the retention of histones.  相似文献   

19.
The sperm nuclear basic proteins (SNBPs) of the marine annelid worm Chaetopterus variopedatus have been shown previously to consist of a mixture of two SNBPs: histone H1-like (CvH1) and C.variopedatus protamine-like (CvPL). Here, we report the structural characterization of CvPL. The protein has a molecular weight of 8370.5 Da, a K/R ratio of 0.34, and a secondary structure, which are intermediate between those of protamine (P) and protamine-like (PL) SNBPs. The N-terminal sequence of CvPL shows a high extent of similarity with the arginine-rich C-terminal domain of chordate PL-type SNBPs. Furthermore, the protein binds to DNA in a similar fashion as vertebrate PLs and their own CvH1, but in a way that is different from that of the lysine-rich somatic H1 histones. We have experimentally determined the molar ratio CvH1:CvPL to be ~1:6 in C. variopedatus sperm. Based on all of these, a model is proposed for the organization of the sperm chromatin by CvH1 and CvPL.  相似文献   

20.
In the eukaryotic cell, DNA compaction is achieved through its interaction with histones, constituting a nucleoprotein complex called chromatin. During metazoan evolution, the different structural and functional constraints imposed on the somatic and germinal cell lines led to a unique process of specialization of the sperm nuclear basic proteins (SNBPs) associated with chromatin in male germ cells. SNBPs encompass a heterogeneous group of proteins which, since their discovery in the nineteenth century, have been studied extensively in different organisms. However, the origin and controversial mechanisms driving the evolution of this group of proteins has only recently started to be understood. Here, we analyze in detail the histone hypothesis for the vertical parallel evolution of SNBPs, involving a “vertical” transition from a histone to a protamine‐like and finally protamine types (H → PL → P), the last one of which is present in the sperm of organisms at the uppermost tips of the phylogenetic tree. In particular, the common ancestry shared by the protamine‐like (PL)‐ and protamine (P)‐types with histone H1 is discussed within the context of the diverse structural and functional constraints acting upon these proteins during bilaterian evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号