首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mantle cell lymphoma (MCL) is an aggressive lymphoid malignancy for which better treatment strategies are needed. To identify potential diagnostic and therapeutic targets, a signature consisting of MCL-associated genes was selected based on a comprehensive gene expression analysis of malignant and normal B cells. The corresponding protein epitope signature tags were identified and used to raise monospecific, polyclonal antibodies, which were subsequently analyzed on paraffin-embedded sections of malignant and normal tissue. In this study, we demonstrate that the initial selection strategy of MCL-associated genes successfully allows identification of protein antigens either uniquely expressed or overexpressed in MCL compared with normal lymphoid tissues. We propose that genome-based, affinity proteomics, using protein epitope signature tag-induced antibodies, is an efficient way to rapidly identify a number of disease-associated protein candidates of both previously known and unknown identities.  相似文献   

2.
DNA vaccination has been widely explored to develop new, alternative and efficient vaccines for cancer immunotherapy. DNA vaccines offer several benefits such as specific targeting, use of multiple genes to enhance immunity and reduced risk compared to conventional vaccines. Rapid developments in molecular biology and immunoinformatics enable rational design approaches. These technologies allow construction of DNA vaccines encoding selected tumor antigens together with molecules to direct and amplify the desired effector pathways, as well as highly targeted vaccines aimed at specific epitopes. Reliable predictions of immunogenic T cell epitope peptides are crucial for rational vaccine design and represent a key problem in immunoinformatics. Computational approaches have been developed to facilitate the process of epitope detection and show potential applications to the immunotherapeutic treatment of cancer. In this review a number of different epitope prediction methods are briefly illustrated and effective use of these resources to support experimental studies is described. Epitope-driven vaccine design employs these bioinformatics algorithms to identify potential targets of vaccines against cancer. In this paper the selection of T cell epitopes to develop epitope-based vaccines, the need for CD4(+) T cell help for improved vaccines and the assessment of vaccine performance against tumor are reviewed. We focused on two applications, namely prediction of novel T cell epitopes and epitope enhancement by sequence modification, and combined rationale design with bioinformatics for creation of new synthetic mini-genes. This review describes the development of epitope-based DNA vaccines and their antitumor effects in preclinical research against B-cell lymphoma, corroborating the usefulness of this platform as a potential tool for cancer therapy. Achievements in the field of DNA vaccines allow to overcome hurdles to clinical translation. In a scenario where the vaccine industry is rapidly changing from a mostly empirical approach to a rational design approach, these new technologies promise to discover and develop high-value vaccines, creating a new opportunity for future markets.  相似文献   

3.
We have developed a software analysis package, HapScope, which includes a comprehensive analysis pipeline and a sophisticated visualization tool for analyzing functionally annotated haplotypes. The HapScope analysis pipeline supports: (i) computational haplotype construction with an expectation-maximization or Bayesian statistical algorithm; (ii) SNP classification by protein coding change, homology to model organisms or putative regulatory regions; and (iii) minimum SNP subset selection by either a Brute Force Algorithm or a Greedy Partition Algorithm. The HapScope viewer displays genomic structure with haplotype information in an integrated environment, providing eight alternative views for assessing genetic and functional correlation. It has a user-friendly interface for: (i) haplotype block visualization; (ii) SNP subset selection; (iii) haplotype consolidation with subset SNP markers; (iv) incorporation of both experimentally determined haplotypes and computational results; and (v) data export for additional analysis. Comparison of haplotypes constructed by the statistical algorithms with those determined experimentally shows variation in haplotype prediction accuracies in genomic regions with different levels of nucleotide diversity. We have applied HapScope in analyzing haplotypes for candidate genes and genomic regions with extensive SNP and genotype data. We envision that the systematic approach of integrating functional genomic analysis with population haplotypes, supported by HapScope, will greatly facilitate current genetic disease research.  相似文献   

4.
Many cancer-testis antigen genes have been identified; however, few human leukocyte antigen (HLA)-A24-restricted cytotoxic T cell (CTL) epitope peptides are available for clinical immunotherapy. To solve this problem, novel tools increasing the efficacy and accuracy of CTL epitope detection are needed. In the present study, we utilized a highly active dendritic cell (DC)-culture method and an in silico HLA-A24 peptide-docking simulation assay to identify novel CTL epitopes from MAGE-A6 and MAGE-A12 antigens. The highly active DCs, called ??-type-1 DCs, were prepared using a combination of maturation reagents to produce a large amount of interleukin-12. Meanwhile, our HLA-A24 peptide-docking simulation assay was previously demonstrated to have an obvious advantage of accuracy over the conventional prediction tool, bioinformatics and molecular analysis section. For CTL induction assays, peripheral blood mononuclear cells derived from six cases of HLA-A24+ melanoma were used. Through CTL induction against melanoma cell lines and peptide-docking simulation assays, two peptides (IFGDPKKLL from MAGE-A6 and IFSKASEYL from MAGE-A12) were identified as novel CTL epitope candidates. Finally, we verified that the combination of the highly active DC-culture method and HLA-A24 peptide-docking simulation assay might be tools for predicting CTL epitopes against cancer antigens.  相似文献   

5.
We present here a software tool for combined visualization of gene-expression data and quantitative trait loci (QTL). The application is implemented as an extension to the Ensembl project and caters for a direct transition from microarray experiments of gene or protein expression levels to the genomic context of individual genes and QTL. It supports the visualization of gene clusters and the selection of functional candidate genes in the context of research on complex traits.  相似文献   

6.

Background  

Expression Quantitative Trait Locus (eQTL) mapping methods have been used to identify the genetic basis of gene expression variations. To map eQTL, thousands of expression profiles are related with sequence polymorphisms across the genome through their correlated variations. These eQTL distribute in many chromosomal regions, each of which can include many genes. The large number of mapping results produced makes it difficult to consider simultaneously the relationships between multiple genomic regions and multiple expressional profiles. There is a need for informative bioinformatics tools to assist the visualization and interpretation of these mapping results.  相似文献   

7.
In the post-genomic era, validation of candidate gene targets frequently requires proteinbased strategies. Phage display is a powerful tool to define protein-protein interactions by generating peptide binders against target antigens. Epitope phage display libraries have the potential to enrich coding exon sequences from human genomic loci. We evaluated genomic and cDNA phage display strategies to identify genes in the 5q31 Interleukin gene cluster and to enrich cell surface receptor tyrosine kinase genes from a breast cancer cDNA library. A genomic display library containing 2 x 106 clones with exon-sized inserts was selected with antibodies specific for human Interleukin-4 (IL-4) and Interleukin-13. The library was enriched significantly after two selection rounds and DNA sequencing revealed unique clones. One clone matched a cognate IL-4 epitope; however, the majority of clone insert sequences corresponded to E. coli genomic DNA. These bacterial sequences act as 'mimotopes' (mimetic sequences of the true epitope), correspond to open reading frames, generate displayed peptides, and compete for binding during phage selection. The specificity of these mimotopes for IL-4 was confirmed by competition ELISA. Other E. coli mimotopes were generated using additional antibodies. Mimotopes for a receptor tyrosine kinase gene were also selected using a breast cancer SKBR-3 cDNA phage display library, screened against an anti-erbB2 monoclonal antibody. Identification of mimotopes in genomic and cDNA phage libraries is essential for phage display-based protein validation assays and two-hybrid phage approaches that examine protein-protein interactions. The predominance of E. coli mimotopes suggests that the E. coli genome may be useful to generate peptide diversity biased towards protein coding sequences.ABBREVIATIONS USED: IL, interleukin; ELISA, enzyme linked immunoabsorbant assay; PBS, phospho-buffered saline; cfu, colony forming units.  相似文献   

8.
Repeat regions of the circumsporozoite protein gene of Plasmodium falciparum were cloned into the pIII gene of a filamentous phage. These genetically engineered filamentous phage display the recombinant proteins on their surface. We demonstrate that they are both antigenic and immunogenic in rabbits. The recombinant phage were shown to be useful as a source of antigen for this scarce malaria protein, for producing carrier-hapten conjugates for obtaining immunological reagents in rabbits, and for B epitope mapping. In addition, in mice the antibody response to the cloned antigens seems to be controlled by immune response genes. Therefore this system also has the potential for use in helper T cell epitope mapping using inbred mouse strains. This advantage will be of use in vaccine development.  相似文献   

9.
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4(+) T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4(+) epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IA(b). We screened these peptides for recognition by IFN-γ producing CD4(+) T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-γ producing CD4(+) T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4(+) targets in large pathogens. Finally, we examined the nature of linkage between CD4(+) T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4(+) T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4(+) response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made.  相似文献   

10.
Intrathymic expression of tissue-specific self antigens may be involved in immunological tolerance and protection from autoimmune disease. We have analyzed the role of T-cell tolerance to proteolipid protein (PLP), the main protein of the myelin sheath, in susceptibility to experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Intrathymic expression of PLP was largely restricted to the shorter splice variant, DM20. Expression of DM20 by thymic epithelium was sufficient to confer T-cell tolerance to all epitopes of PLP in EAE-resistant C57BL/6 mice. In contrast, the major T-cell epitope in SJL/J mice was only encoded by the central nervous system-specific exon of PLP, but not by thymic DM20. Thus, lack of tolerance to this epitope offers an explanation for the exquisite susceptibility of SJL/J mice to EAE. As PLP expression in the human thymus is also restricted to the DM20 isoform, these findings have implications for selection of the autoimmune T-cell repertoire in multiple sclerosis.  相似文献   

11.
Acinetobacter baumannii surface protein, commonly known as biofilm associated protein (Bap), is involved in biofilm formation. A high propensity among the clinical isolates to form biofilm and a significant association of biofilms with multiple drug resistance has been demonstrated. Production of antibodies can be used for inhibition of biofilm and control of the diseases caused by A. baumannii. Large molecular mass of Bap justifies an approach to identifying A. baumannii effective antigens. It has a core domain of seven repeat modules A-G. With the large number of available biofilm gene sequences, bioinformatic tools are needed to identify the genes encoding the antigens. Proteins containing these tandem repeats of Bap domains have high propensities to attach to each other to form biofilm. We hypothesized that conserved and functional domains of tandem repeat could be identified with a search and alignment of the repeats for evaluation of antigenic determinants. Here we demonstrate the results of bioinformatics screening and gene scan of the gene sequence database of homolog sequences to identify conserved domains. Higher scoring hits were found in repeat modules mostly D, B, C and A, respectively. Upon the analysis four regions of highly structural and functional conserved regions from Bap sequence of A. baumannii were selected. 3D structure, antigenicity and solubility predictions revealed that these regions were appropriate candidates for antibody production.  相似文献   

12.
Epitope mapping studies aim to identify the binding sites of antibody-antigen interactions to enhance the development of vaccines, diagnostics and immunotherapeutic compounds. However, mapping is a laborious process employing time- and resource-consuming ‘wet bench’ techniques or epitope prediction software that are still in their infancy. For polymorphic antigens, another challenge is characterizing cross-reactivity between epitopes, teasing out distinctions between broadly cross-reactive responses, limited cross-reactions among variants and the truly type-specific responses. A refined understanding of cross-reactive antibody binding could guide the selection of the most informative subsets of variants for diagnostics and multivalent subunit vaccines. We explored the antibody binding reactivity of sera from human patients and Peromyscus leucopus rodents infected with Borrelia burgdorferi to the polymorphic outer surface protein C (OspC), an attractive candidate antigen for vaccine and improved diagnostics for Lyme disease. We constructed a protein microarray displaying 23 natural variants of OspC and quantified the degree of cross-reactive antibody binding between all pairs of variants, using Pearson correlation calculated on the reactivity values using three independent transforms of the raw data: (1) logarithmic, (2) rank, and (3) binary indicators. We observed that the global amino acid sequence identity between OspC pairs was a poor predictor of cross-reactive antibody binding. Then we asked if specific regions of the protein would better explain the observed cross-reactive binding and performed in silico screening of the linear sequence and 3-dimensional structure of OspC. This analysis pointed to residues 179 through 188 the fifth C-terminal helix of the structure as a major determinant of type-specific cross-reactive antibody binding. We developed bioinformatics methods to systematically analyze the relationship between local sequence/structure variation and cross-reactive antibody binding patterns among variants of a polymorphic antigen, and this method can be applied to other polymorphic antigens for which immune response data is available for multiple variants.  相似文献   

13.
14.
The gene encoding the Pseudomonas aeruginosa phosphate-specific porin OprP was subjected to both linker and epitope insertion mutageneses. Nine of the 13 linker mutant genes expressed protein at levels comparable to those obtained with the wild-type gene. These mutant proteins were shown, by indirect immunofluorescence with an OprP-specific antiserum, to be properly exposed at the cell surface. Four of the linker mutant genes expressed protein at reduced levels which were not detectable at the cell surface. A foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum was cloned into the linker sites of 12 of the 13 mutant genes. Seven of the resultant epitope insertion mutant genes expressed surface-exposed protein. Two of these mutant genes presented the foreign epitope at surface-accessible regions as assessed by indirect immunofluorescence with a malarial epitope-specific monoclonal antibody. The data from these experiments were used to create a topological model of the OprP monomer.  相似文献   

15.

Background  

Interpretation of comprehensive DNA microarray data sets is a challenging task for biologists and process engineers where scientific assistance of statistics and bioinformatics is essential. Interdisciplinary cooperation and concerted development of software-tools for simplified and accelerated data analysis and interpretation is the key to overcome the bottleneck in data-analysis workflows. This approach is exemplified by gcExplorer an interactive visualization toolbox based on cluster analysis. Clustering is an important tool in gene expression data analysis to find groups of co-expressed genes which can finally suggest functional pathways and interactions between genes. The visualization of gene clusters gives practitioners an understanding of the cluster structure of their data and makes it easier to interpret the cluster results.  相似文献   

16.
Here we show that an affinity proteomics strategy using affinity-purified antibodies raised against recombinant human protein fragments can be used for chromosome-wide protein profiling. The approach is based on affinity reagents raised toward bioinformatics-designed protein epitope signature tags corresponding to unique regions of individual gene loci. The genes of human chromosome 21 identified by the genome efforts were investigated, and the success rates for de novo cloning, protein production, and antibody generation were 85, 76, and 56%, respectively. Using human tissue arrays, a systematic profiling of protein expression and subcellular localization was undertaken for the putative gene products. The results suggest that this affinity proteomics strategy can be used to produce a proteome atlas, describing distribution and expression of proteins in normal tissues as well as in common cancers and other forms of diseased tissues.  相似文献   

17.
Quantitative trait locus (QTL) analysis is a powerful method for localizing disease genes, but identifying the causal gene remains difficult. Rodent models of disease facilitate QTL gene identification, and causal genes underlying rodent QTL are often associated with the corresponding human diseases. Recently developed bioinformatics methods, including comparative genomics, combined cross analysis, interval-specific and genome-wide haplotype analysis, followed by sequence and expression analysis, each facilitated by public databases, provide new tools for narrowing rodent QTLs. Here we discuss each tool, illustrate its application and generate a bioinformatics strategy for narrowing QTLs. Combining these bioinformatics tools with classical experimental methods should accelerate QTL gene identification.  相似文献   

18.
Andrews TD  Gojobori T 《Genetics》2004,166(1):25-32
The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.  相似文献   

19.
20.
The circumsporozoite gene of the Plasmodium cynomolgi complex   总被引:14,自引:0,他引:14  
An analysis of the circumsporozoite (CS) genes of six closely related plasmodia is presented. Like other plasmodial antigens, the CS protein contains tandem repeats flanked by conventional nonrepeated sequences. Our analysis shows that the repeats, which encode the immunodominant epitope of the CS protein, diverge more rapidly than the remainder of the gene, and that the maintenance and evolution of the repeats cannot be explained as the result of selection at the protein level. We argue that a mechanism acts directly on the DNA sequence to constrain the internal divergence of the repeats, and as a result promotes their rapid divergence between taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号