首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confluent secondary cultures of rat arterial smooth muscle cells were exposed to cationic and anionic derivatives of ferritin and horseradish peroxidase and studied electron microscopically in order to clarify the influence of molecular net charge on surface binding and endocytosis of proteins. The cationic markers bound uniformly to the plasma membrane. They were then ingested by membrane invagination and via small vesicles transported to lysosomes and the Golgi complex. These organelles were both labelled already after 30 min of incubation. With longer exposure times (2-4 h), an increasing accumulation within the lysosomes was observed, whereas the labelling of the Golgi complex decreased. In spite of continued interiorization of plasma membrane carrying the cationic markers, the cells retained their ability to bind the latter to the surface. The anionic markers did not bind to the cell surface, were taken up in the fluid phase, and later observed only in lysosomes. If assuming that the cationic and anionic proteins serve as markers for the plasma membrane and fluid phase, respectively, but do not affect the intracellular path of interiorized membrane, these results indicate that the endocytic vesicles fuse with and empty their content into lysosomes and that part of the incoming membrane subsequently is transferred to the Golgi complex for possible recirculation back to the cell surface. If, on the other hand, the net charge of the exogenous marker influences the path of the vesicles, there may exist more than one recovery route for membrane interiorized by endocytosis.  相似文献   

2.
R. D. Record  L. R. Griffing 《Planta》1988,176(4):425-432
Ultrastructural analysis of endocytosis of cationized ferritin (CF) has been combined with ultrastructural localization of acid phosphatases (AcPase) in soybean (Glycine max (L.) Merr.) protoplasts. While CF is an electron-dense marker of organelles of the endocytic pathway, ultrastructural histochemistry of AcPase identifies the organelles involved in the synthesis, transport, and storage of lytic-compartment enzymes, i.e. the lysosomal pathway. Acid phosphatases have been localized using both lead- and cerium-precipitation techniques. Protoplasts have been exposed to CF for 5 min, 30 min, or 3 h and processed for AcPase localization. At 5 min, smooth vesicles contain both CF and AcPase. By 30 min, Golgi cisternae and multivesicular bodies contain both labels. By 3 h, vacuoles become labelled with both CF and AcPase. The large central vacuoles contain intraluminal membranes which are associated with both AcPase and CF. These observations extend the analogy between plant vacuoles and animal lysosomes and demonstrate the points at which the endocytic pathway of plants converges with the lysosomal pathway.Abbreviations AcPase acid phosphatase - CF cationized ferritin - ER endoplasmic reticulum - MVB multivesicular body - PCR partially coated reticulum - PM plasma membrane  相似文献   

3.
Summary The absorptive epithelium of the trophotaeniae of goodeid embryos is involved in the micropinocytotic uptake of protein macromolecules from the ovarian embryotrophe. Incubations of viable Xenoophorus captivus embryos in vitro with horseradish peroxidase (HRP) and/or cationized ferritin (CF) allows the tracing of the fluid-phase and receptor-mediated pathways, respectively. Effects of lowered temperature on both these endocytotic mechanisms have been investigated. At 10° C, trophotaenial absorptive cells (TACs) have a strong capacity to ingest marker proteins from double tracer media. Surface-bound ligands (CF) and solutes (HRP), taken up in primary pinocytic vesicles, are rapidly channelled to the endosomal compartment. Part of the ingested CF is segregated into dense apical tubules and small vesicles indicating that membrane recycling and transcytosis continue at 10° C. Adsorptive endocytosis of CF at 5° C proceeds at a decreased rate. After incubation periods of 30 min and 1 h, tracer molecules can be found in vesicular, tubular and vacuolar compartments of the apical endocytic zone. At 0° C, no uptake of ligand worth mentioning could be ascertained. Fluid-phase endocytosis, on the other hand, is observable at this temperature. Enzyme reaction product accumulates in flattened vacuoles rather than typical voluminous endosomes. After prolonged exposure to HRP, the epithelial junctional complex becomes leaky and the marker protein penetrates the intercellular space and the lateral lamellar membrane invaginations of TACs.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

4.
We have studied the transport of ferritin that was internalized by coated micropinocytic vesicles at the apical surface of the choroid plexus epithelium in situ. After ventriculocisternal perfusion of native ferritin (NF) or cationized ferritin (CF), three routes followed by the tracers are revealed: (a) to lysosomes, (b) to cisternal compartments, and (c) to the basolateral cell surface. (a) NF is micropinocytosed to a very limited degree and appears in a few lysosomal elements whereas CF is taken up in large amounts and can be followed, via endocytic vacuoles and light multivesicular bodies, to dark multivesicular bodies and dense bodies. (b) Occasionally, CF particles are found in cisterns that may represent GERL or trans-Golgi elements, whereas stacked Golgi cisterns never contain CF. (c) Transepithelial vesicular transport of CF is distinctly revealed. The intercellular spaces of the epithelium, below the apical tight junctions, contain numerous clusters of CF particles, often associated with surface-connected, coated vesicles. Vesicles in the process of exocytosis of CF are also present at the basal epithelial surface, whereas connective tissue elements below the epithelium are unlabeled. Our conclusion is that fluid and solutes removed from the cerebrospinal fluid by endocytosis either become sequestered in the lysosomal apparatus of the choroidal epithelium or are transported to the basolateral surface. However, our results do not indicate any significant recycling via Golgi complexes of internalized apical cell membrane.  相似文献   

5.
Internalization of cationized ferritin by isolated pancreatic acinar cells   总被引:2,自引:0,他引:2  
The internalization of cationized ferritin (CF) was studied in isolated pancreatic acinar cells in vitro. Horseradish peroxidase (HRP) was used in conjunction with CF to compare internalization of soluble-phase and membrane-bound tracers. The mode of internalization of CF was dependent upon tracer concentration and origin of the plasma membrane (apical vs. lateral-basal). At the lower tracer concentrations (0.19 and 0.38 mg/ml), internalization from the apical cell surface occurred via small vesicles. The tracer then appeared in multivesicular bodies, in tubules, and in irregular membrane-bound structures. After 15 min, CF particles were seen in many small vesicles near the Golgi apparatus, but not in the Golgi saccules. In contrast, at the lateral-basal cell surface the CF particles tended to form clusters. These clusters were more pronounced at higher CF concentrations (0.76 and 1.5 mg/ml) and were associated with elongated cellular processes, which seemed to engulf CF accumulations in a phagocytic manner. Once internalized, CF was found primarily in large irregular structures which appeared to migrate slowly toward the nucleus, reaching a juxtanuclear position after approximately 30 min. CF was observed in lysosomes after 30-45 min and by 90 min most of the CF was confined to large vacuoles and to trimetaphosphatase-positive lysosomes. Similar routes were observed when cells were double-labeled with CF and HRP, where endocytic structures showed co-localization of both tracers. The results of this study indicate the importance of the Golgi region in the intracellular sorting of internalized apical membrane. Furthermore, this work confirms the presence of distinct endocytic pathways at the apical and lateral-basal cell surfaces.  相似文献   

6.
We have developed a chemically defined monolayer culture system for guinea pig seminal vesicle epithelial cells (SVEP). The cells appeared as a polarized monolayer with apical microvilli, tight junctions and desmosome-like junctions, and often dilated intercellular spaces. SVEP expressed epithelial-specific cytokeratins as detected immunocytochemically. Growth was obtained during the first week of culture. In this period, the cells were exposed to unconjugated horseradish peroxidase (HRP), a ricin-peroxidase conjugate (Ri-HRP), or cationized ferritin (CF). HRP was endocytosed without binding to the SVEP surface (fluid-phase endocytosis) and was found mainly in multivesicular endosomes and lysosomes. Ri-HRP and CF, however, were endocytosed following binding to the cell surface. Initially these markers were present in multivesicular endosomes, but later also in smaller tubular and vesicular endosomes, some Golgi-associated elements (but not Golgi stacks), and lysosomes. We conclude that our SVEP culture system may be useful in further studies, on e.g. hormonal regulation of endocytosis and other processes of importance for SVEP maintenance and modulation of the seminal fluid in vivo.  相似文献   

7.
Cells dissociated from rat anterior pituitaries were incubated with native or cationized ferritin (CF) to trace the fate of surface membrane. Native ferritin, which did not bind to the cell surface, was taken up in small amounts by bulk-phase endocytosis and was found increasingly (over 1-2 h) concentrated in lysosomes. CF at 100-fold less concentrations bound rapidly to the cell membrane, was taken up by endocytosis in far greater amounts, and within 15-60 min was found increasingly within multiple stacked Golgi cisternae, around forming secretion granules, and within elements of GERL, as well as within lysosomes. The findings demonstrate that the fate of the tracer--and presumably also that of the surface membrane--varies with the same molecule differing only in net charge: vesicles carrying anionic ferritin (net negative charge) fuse only with elements of the lysosomal system whereas those carrying CF (net positive charge) can fuse not only with elements of the lysosomal system, but also with elements along the secretory pathway (Golgi cisternae and condensing granules) as well.  相似文献   

8.
Summary The present study was performed to investigate whether membrane recycling via the dense apical tubules in cells of renal proximal tubules could be modified after exposure to large amounts of cationized ferritin. Proximal tubules in the rat kidney were microinfused in vivo with cationized ferritin for 10 or 30 min and then fixed with glutaraldehyde by microinfusion, or proximal tubules were microinfused with ferritin for 30 min and then fixed 2 h thereafter. The tubules were processed for electron microscopy, and the surface density and the volume density of the different cell organelles involved in endocytosis were determined by morphometry. The morphometric analyses showed that after loading of the endocytic vesicles with ferritin the surface density of dense apical tubules decreased to about 50% of the original value. However, 2 h later when ferritin had accumulated in the lysosomes the surface density of dense apical tubules had returned to control values. Furthermore, cationized ferritin was virtually absent from the Golgi region, indicating that the Golgi apparatus in these cells does not participate in membrane recycling. In conclusion, the present study shows that membrane recycling in renal proximal tubule cells can in part be inhibited by loading the endocytic vacuoles with ferritin.  相似文献   

9.
Summary The uptake and pathway of different markers and ligands for fluid-phase, adsorptive and receptor mediated endocytosis were analyzed in the epithelial cells lining the rete testis after their infusion into the lumen of these anastomotic channels. At 2 min after injection, diferric transferrin bound to colloidal gold was seen attached to the apical plasma membrane and to the membrane of endocytic coated and uncoated pits and vesicles. The injection of transferrin-gold in the presence of a 100-fold excess of unconjugated diferric transferrin revealed no binding or internalization of transferrin-gold. Similarly, apotransferrin-gold was neither bound to the apical plasma membrane nor internalized by these cells. These results thus indicate the presence of specific binding sites for diferric transferrin. At 5 min, internalized diferric transferrin-gold reached endosomes. At 15 and 30 min, the endosomes were still labeled but at these time intervals the transferrin-gold also appeared in tubular elements connected to or associated with these bodies or seen in close proximity to the apical plasma membrane. At 60 and 90 min, most of the transferrin-gold was no longer present in these organelles and was seen only exceptionally in secondary lysosomes. These results thus suggest that the tubular elements may be involved in the recycling of transferrin back to the lumen of the rete testis. The coinjection of transferrin-gold and the fluid-phase marker native ferritin revealed that both proteins were often internalized in the same endocytic pit and vesicle and shared the same endosome. However, unlike transferrin, native ferritin at the late time intervals appeared in dense multivesicular bodies and secondary lysosomes. When the adsorptive marker cationic ferritin and the fluid-phase marker albumin-gold were coinjected, again both proteins often shared the same endocytic pit and vesicle, endosome, pale and dense multivesicular body and secondary lysosomes. However, several endocytic vesicles labeled only with cationic ferritin appeared to bypass the endosomal and lysosomal compartments and to reach the lateral intercellular space and areas of the basement membrane. The rete epithelial cells, therefore, appear to be internalizing proteins and ligands by receptor-mediated and non-specific endocytosis which, after having shared the same endocytic vesicle and endosome, appear to be capable of being segregated and routed to different destinations.  相似文献   

10.
Activation of the teleost (Brachydanio) fish egg includes the exocytosis of cortical granules, the construction of a mosaic surface consisting of the unfertilized egg plasma membrane and the limiting membranes of the cortical granules, and the appearance of coated and smooth vesicles in the cytoplasm (Donovan and Hart, '82). Unfertilized and activated eggs were incubated in selected extracellular tracers to (1) determine experimentally if cortical granule exocytosis was coupled with the endocytosis of membrane during the cortical reaction, and (2) establish the intracellular pathway(s) by which internalized vesicles were processed. Unfertilized eggs incubated in dechlorinated tap water or Fish Ringer's solution containing either horseradish peroxidase (HRP; 10 mg/ml), native ferritin (12.5 mg/ml), or cationized ferritin (12.5 mg/ml) were activated as judged by cortical granule breakdown and elevation of the chorion. Cells treated with HRP and native ferritin exhibited a delay in cortical granule exocytosis when compared with water-activated eggs lacking the tracer. Each tracer was internalized through the formation of a coated vesicle from a coated pit. Since coated pits appeared to be topographically restricted to the perigranular membrane domain of the mosaic egg surface, their labeling, particularly with cationized ferritin, strongly suggested that the retrieved membrane was of cortical granule origin. Cationized ferritin and concanavalin A (Con A) coupled with either hemocyanin or ferritin labeled the surface of the unactivated egg and both domains of the mosaic egg surface. Transformation of the deep evacuated cortical granule crypt into later profiles of exocytosis was accompanied by increased Con A binding. Within activated egg cortices, HRP reaction product, native ferritin, and cationized ferritin were routinely localized in smooth vesicles, multivesicular bodies, and autophagic vacuoles. Occasionally, each tracer was found in small coated vesicles adjacent to the Golgi and within Golgi cisternae. The intracellular distribution of HRP, native ferritin, and cationized ferritin suggests that internalized membrane is primarily processed by organelles of the lysosomal compartment. A second and less significant pathway is the Golgi complex.  相似文献   

11.
Membrane retrieval in epithelial cells of isolated thyroid follicles.   总被引:6,自引:0,他引:6  
Follicles from rat and pig thyroid glands were isolated by digestion with collagenase. The epithelial cells of isolated follicles maintain their structural and functional polarity as shown by incorporation of 3H-leucine and autoradiography. To trace the fate of surface membrane, isolated follicles were opened, stimulated with thyrotropin and incubated for various time intervals with cationized ferritin (CF), uncharged dextran, native ferritin (NF), and latex spheres (0.5 mum in diameter) which were either pre-coated with CF or added together with CF. Uncharged dextran and native ferritin did not bind to the luminal cell membrane, were taken up in small amounts and accumulated in lysosomes; anionic NF was not found in Golgi cisternae in contrast to uncharged dextran which occassionally reached a few Golgi stacks. CF bound rapidly and in clusters to the luminal plasmalemma, preferentially to coated pits, was taken up by endocytosis, accumulated in lysosomes after 5 min and reached the Golgi cisternae after 30 min. Latex spheres were taken up by engulfment through fusion of microvilli and reached the lysosomes. CF particles coating the latex spheres may detach at this station and reach the Golgi cisternae. The findings show that the route of small tracers depends on the charge of the tracer, in agreement with results obtained by Farquhar [8]. Vesicles carrying NF can be traced to lysosomes only, whereas vesicles containing uncharged dextran or - more conspicuously -CF also fuse with Golgi membranes. Large tracers (latex beads) reach only the lysosomes, but CF taken up with them may move to Golgi cisternae.  相似文献   

12.
Although recent data from our laboratory have established the occurrence of receptor-mediated endocytosis in intrahepatic bile duct epithelial cells (IBDEC) isolated from normal rat liver, no studies have assessed the role of isolated IBDEC in fluid-phase endocytosis. Therefore, to determine if IBDEC participate in fluid-phase endocytosis, we incubated morphologically polar doublets of IBDEC isolated from normal rat liver with horseradish peroxidase (HRP, 5 mg/ml), a protein internalized by fluid-phase endocytosis, and determined its intracellular distribution by electron microscopic cytochemistry. Pulse-chase studies using quantitative morphometry were also performed to assess the fate of HRP after internalization. After incubation at 37 degrees C, IBDEC internalized HRP exclusively at the apical (i.e., luminal) domain of their plasma membrane; internalization was completely blocked at 4 degrees C. After internalization, HRP was seen in acid phosphatase-negative vesicles and in acid phosphatase-positive multivesicular bodies (i.e., secondary lysosomes). Small acid phosphatase-negative vesicles containing HRP moved progressively from the apical to the basal domain of IBDEC. Pulse-chase studies showed that HRP was then discharged by exocytosis at the basolateral cell surface. These results demonstrate that IBDEC prepared from normal rat liver participate in fluid-phase endocytosis. After internalization, HRP either is routed to secondary lysosomes or undergoes exocytosis after transcytosis from the luminal to the basolateral cell surface. Our results suggest that IBDEC modify the composition of bile by internalizing both biliary proteins and fluid via endocytic mechanisms.  相似文献   

13.
The nonciliated cells lining the ductuli efferentes presented three distinct cytoplasmic regions. The apical region contained, in addition to cisternae of endoplasmic reticulum and mitochondria, two distinct membranous elements. The tubulovesicular system consisted of dilated tubules connected to the apical plasma membrane and subjacent distended vesicular profiles. The apical tubules, not connected to the cell surface, consisted of numerous densely stained tubules of small size which contain a compact, finely granulated material. The supranuclear region, in addition to a Golgi apparatus and ER cisternae, contained dilated vacuoles, pale and dense multivesicular bodies, as well as numerous dense granules identified cytochemically as lysosomes. The basal region contained the nucleus and many lipid droplets. The endocytic activity of these cells was investigated using cationic ferritin (CF) and concanavalin-A-ferritin (Con-A-ferritin) as markers of adsorptive endocytosis; and native ferritin (NF), concanavalin-A-ferritin in the presence of alpha-methyl mannoside, and horseradish peroxidase or albumin bound to colloidal gold for demonstrating fluid-phase endocytosis. These tracers were injected separately into the rete testis, and animals were sacrificed at various time intervals after injection. At 1 min, CF or Con-A-ferritin were seen bound to the apical plasma membrane, to the membrane of microvilli, and to the membrane delimiting elements of the tubulovesicular system. Between 2 and 5 min, these tracers accumulated in the densely stained apical tubules and at 15 min in the dilated vacuoles. Between 30 min and 1 hr, the tracers appeared in multivesicular bodies of progressively increasing density, whereas at 2 hr and later time intervals, many dense lysosomal elements became labeled. The tracers for fluid-phase endocytosis showed a distribution similar to that for CF or Con-A-ferritin except that they did not bind to the apical plasma membrane, microvilli, or membrane delimiting the tubulovesicular system. At no time interval were any of the tracers observed in the abluminal spaces. Thus, the nonciliated epithelial cells of the ductuli efferentes are actively involved in fluid-phase and adsorptive endocytosis, both of which result in the sequestration of endocytosed material within the lysosomal apparatus of the cell.  相似文献   

14.
Somatotrophs from male rat anterior pituitary were used to investigate the formation of secretory granules. When enzymatically dispersed cells were incubated with cationized ferritin (CF) for 15 min, CF labeled immature secretory granules, but not mature granules of somatotrophs. Most immature granules labeled by CF transformed to the mature types within 120 min. This indicates that the fusion of endocytic vesicles with the immature granules occurs during the maturation process of secretory granules. The internalized CF was distributed not only in the immature secretory granules, but also in the peripheral region of trans Golgi cisternae or GERL. Enzyme cytochemistry revealed that acid phosphatase-positive cisternae (GERL) were the main site for secretory granule formation, and was devoid of thiamine pyrophosphatase (TPPase) activity. A small number of secretory granules were also present in the peripheral regions of TPPase-positive Golgi cisternae. The granule-forming sites, however, lacked TPPase activity, while the remaining region of the same cisterna showed the positive enzyme activity. This indicates that the granule-forming region at the periphery of Golgi cisterna is different from the remaining part of the same cisterna in terms of cytochemical properties. This probably results from the insertion of endocytic vesicle membrane, since the same granule-forming sites preferentially fused with CF-labeled small vesicles which lacked cytochemical TPPase activity. Taken together. Our results suggest that the membrane of secretory granules is modified during the granule formation, at least partly by the fusion of endocytic small vesicles with Golgi cisternae (or GERL), and with immature secretory granules.  相似文献   

15.
16.
We have localized horseradish peroxidase (HRP) in the mouse uterus after intravenous administration on days 1 and 5 of pregnancy in an effort to understand how serum proteins reach the uterine lumen. Direct movement of HRP into uterine and glandular lumina was blocked by the epithelial tight junctions on both days. In luminal and glandular epithelial cells at both times, HRP was localized in endocytic vesicles along the basolateral membranes, multivesicular bodies (mvb), elongated dense bodies below the nucleus (bdb), and many small vesicles near the apical surface of the cells. The uptake of HRP was most extensive in the luminal epithelium on day 1: the number of tracer-containing apical vesicles and bdb was largest, and there were also clusters of vesicles containing the tracer above the nucleus. Acid phosphatase was localized on day 1 in mvb and bdb in both cell types, indicating that these structures are lysosomes. It appeared that HRP followed two pathways after basolateral endocytosis by the epithelial cells: it was transported to the apical region of the cells, where it was present in small vesicles that may release their contents into the uterine or glandular lumina, or it was transported to lysosomes. To investigate whether macromolecules may be transported from the uterine lumen to the stroma, we also studied endocytosis at the apical pole of luminal epithelial cells after intraluminal injection of HRP. There was no detectable uptake of HRP from the lumen on day 1, and no tracer was detected in the intercellular spaces or basement membrane region. On day 5, a large amount of HRP was taken up from the lumen into apical endocytic vesicles, mvb, and dense bodies, but tracer was not present in the Golgi apparatus, lateral intercellular spaces, or the basement membrane region at the times studied. These observations indicate that there was no transport of luminal macromolecules to the uterine stroma on day 1, while the possibility of transport on day 5 requires further study.  相似文献   

17.
Lactoperoxidase-mediated iodination at 4 degrees C--an established method for covalent labelling of plasma membrane proteins--and quantitative electron microscopic autoradiography were used to follow the pathways of endocytosis in mouse macrophages in vitro. Directly after the labelling, the autoradiographic grains were concentrated to the cell surface. After warming to 37 degrees C, radioactive material was rapidly internalized into cytoplasmic vesicles and subsequently transferred to lysosomes as well as to the Golgi complex. Maximum grain density (% grains/% volume) over the vesicles was observed after 15 min, over the lysosomes after 30 to 45 min and over the Golgi complex after 30 and 90 min. Throughout the experimental period (120 min), the vesicles showed the largest fraction of intracellular grains, but higher grain densities occurred in lysosomes as well as in stacked Golgi cisternae and Golgi-associated vesicles. In spite of the internalization process, the labelling of the cell surface came to a steady state already after 30 min and at all intervals more than 50% of the autoradiographic grains were localized to this compartment. About 25% of the cell-associated radioactivity was lost rapidly with a half-life of 20 to 25 min and the remaining 75% slowly with a half-life of 7 to 9 h. The results indicate that membrane internalized by endocytosis partly follows a route to the lysosomes and that, additionally, there exists a route to and through the Golgi complex. They further support earlier notions of a bidirectional traffic between the surface and interior of the cell and suggest that recycling of membrane components may take place from endocytic vesicles, lysosomes, as well as the Golgi complex.  相似文献   

18.
Transcytosis in thyroid follicle cells   总被引:14,自引:6,他引:8       下载免费PDF全文
Inside-out follicles prepared from pig thyroid glands were used for studies on endocytosis. endocytosis. In this in vitro system, only the apical plasma membranes of follicle cells were exposed to tracers added to the culture medium. Cationized ferritin (CF) bound to the apical plasma membrane and was transferred first to endosomes and to lysosomes (within 5 min). Later, after approximately 30 min, CF was also found in stacked Golgi cisternae. In addition, a small fraction of endocytic vesicles carrying CF particles became inserted into the lateral (at approximately 11 min) and the basal (at approximately 16 min) plasma membranes. Morphometric evaluation of CF adhering to the basolateral cell surfaces showed that the vesicular transport across thyroid follicle cells (transcytosis) was temperature-sensitive; it ceased at 15 degrees C but increased about ninefold in follicles stimulated with thyrotropin (TSH). Thyroglobulin-gold conjugates and [3H]thyroglobulin (synthesized in separate follicle preparations in the presence of [3H]leucine) were absorbed to the apical plasma membrane and detected mainly in lysosomes. A small fraction was also transported to the basolateral cell surfaces where the thyroglobulin preparations detached and accumulated in the newly formed central cavity. As in the case of CF, transcytosis of thyroglobulin depended on the stimulation of follicles with TSH. The observations showed that a transepithelial vesicular transport operates in thyroid follicle cells. This transport is regulated by TSH and includes the transfer of thyroglobulin from the apical to the basolateral plasma membranes. Transcytosis of thyroglobulin could explain the occurrence of intact thyroglobulin in the circulation of man and several mammalian species.  相似文献   

19.
Mouse L-fibroblasts internalized large amounts of cationized ferritin (CF) by pinocytosis. Initially (60-90 s after addition of CF to cell monolayers at 37 degrees C), CF was found in vesicles measuring 100-400 nm (sectioned diameter) and as small clusters adhering to the inner aspect of the limiting membrane of a few large (greater than 600 nm) vacuoles. After 5-30 min, CF labeling of large vacuoles was pronounced and continuous. Moreover, 70-80% of all labeled structures were tiny (less than 100 nm) vesicles. However, the absolute frequency of tiny vesicles increased more than twofold from 5 min to 30 min. When the cells were incubated with CF for 30 min, then washed and further incubated for 3 h without CF, almost all CF was present in dense bodies (100-500 nm). When L-cells were first incubated with horseradish peroxidase (HRP), then washed and incubated with CF, double-labeled vacuoles were observed. Tiny vesicles also contained HRP-CF, and small HRP-CF patches were localized on the cell surface. Distinct labeling of stacked Golgi cisterns was not observed in any experiment. These observations suggest that the numerous tiny vesicles are not endocytic but rather pinch off from the large vacuoles and move towards the cell surface to fuse with the plasma membrane. Thus, ultrastructural evidence is provided in favor of a direct membrane shuttle between the plasma membrane and the lysosomal compartment.  相似文献   

20.
Transitional cells line the intermediate region of rat seminiferous tubules situated between the rete testis and the seminiferous epithelium proper. These tall elongated cells orient themselves in a downstream direction and converge on one another distally in the lumen of the rete testis where they form a distinct papillalike structure through which a narrow patent lumen is apparent. In addition to widely dispersed Golgi apparatus and mitochondria, these cells contain an abundance of microtubules, cisternae of endoplasmic reticulum, and a distinct lobulated nucleus showing clumps of chromatin and a prominent nucleolus. The endocytic activity of these cells was examined by employing adsorptive (cationic ferritin, concanavalin A ferritin) and fluid-phase tracers (native ferritin, horseradish peroxidase-colloidal gold complex, and concanavalin A ferritin in presence of alpha methyl-D-mannoside). Such tracers were injected separately into the lumen of the rete testis, and the animals were killed at 2, 5, 15, and 30 min and 1, 2, and 6 hr after injection. At 2 min, both adsorptive and fluid-phase tracers were found within coated and uncoated pits of the apical plasma membrane of these cells as well as in large, subsurface, uncoated spherical, C-shaped, and tubular membranous elements. At 5 min the tracers were seen in endosomes of different sizes; while at 15 min and 30 min, pale and dense multivesicular bodies of small and large sizes, respectively, were labeled. At 1-hr and longer time intervals secondary lysosomes became labeled. While both fluid-phase and adsorptive tracers followed the same pathway and fate, binding to the apical and lateral plasma membranes of the transitional cells and to the membrane delimiting coated and uncoated pits was observed only with the adsorptive tracers. These results demonstrate that the transitional cells are actively involved in both fluid-phase and adsorptive endocytosis, which may play an important role in modifying the composition of the luminal fluid. The transitional cells of the distal zone of the intermediate region rest on an elaborate basement membrane (BM) complex which includes a thin BM immediately underlying these cells, a thick distal layer of BM, and strands of BM spanning the distance between the two in the form of a loose anastomotic network. Use of antisera against heparan sulfate proteoglycan, laminin, and type IV collagen revealed the presence of all three components within all areas of the BM complex. In the meshes of the anastomotic BM network, extracellular vesicles were observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号