首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of radicals in the presence of O2, or singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. They can be detected in cells and are poorly removed by enzymatic defenses. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, with this resulting in inactivation of some thiol-dependent enzymes. In light of these data, we hypothesized that inactivation of protein tyrosine phosphatases (PTPs), by hydroperoxides present on oxidized proteins, may contribute to cellular and tissue dysfunction by modulation of phosphorylation-dependent cell signaling. We show here that PTPs in cell lysates, and purified PTP-1B, are inactivated by amino acid, peptide, and protein hydroperoxides in a concentration- and structure-dependent manner. Protein hydroperoxides are particularly effective, with inhibition occurring with greater efficacy than with H2O2. Inactivation involves reaction of the hydroperoxide with the conserved active-site Cys residue of the PTPs, as evidenced by hydroperoxide consumption measurements and a diminution of this effect on blocking the Cys residue. This inhibition of PTPs, by oxidized proteins containing hydroperoxide groups, may contribute to cellular dysfunction and altered redox signaling in systems subject to oxidative stress.  相似文献   

2.
Reaction of radicals in the presence of O2, and singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, and that this can result in inactivation of thiol-dependent enzymes. The major route for the cellular removal of damaged proteins is via catabolism mediated by proteosomal and lysosomal pathways; cysteine proteases (cathepsins) play a key role in the latter system. We hypothesized that inactivation of cysteine proteases by hydroperoxide-containing oxidised proteins may contribute to the accumulation of modified proteins within cells. We show here that thiol-dependent cathepsins, either isolated or in cell lysates, are rapidly and efficiently inactivated by amino acid, peptide, and protein hydroperoxides in a time- and concentration-dependent manner; this occurs with similar efficacy to equimolar H2O2. Inactivation involves reaction of the hydroperoxide with Cys residues as evidenced by thiol loss and formation of sulfenic acid intermediates. Structurally related, non-thiol-dependent cathepsins are less readily inactivated by these hydroperoxides. This inhibition, by oxidized proteins, of the system designed to remove modified proteins, may contribute to the accumulation of damaged proteins in cells subject to oxidative stress.  相似文献   

3.
The ubiquitin-proteasome system governs the half-life of most cellular proteins. Calorie restriction (CR) extends the maximum life span of a variety of species and prevents oxidized protein accumulation. We studied the effects of CR on the ubiquitin-proteasome system and protein turnover in aging Saccharomyces cerevisiae. CR increased chronological life span as well as proteasome activity compared to control cells. The levels of protein carbonyls, a marker of protein oxidation, and those of polyubiquitinated proteins were modulated by CR. Controls, but not CR cells, exhibited a significant increase in oxidized proteins. In keeping with decreased proteasome activity, polyubiquitinated proteins were increased in young control cells compared to time-matched CR cells, but were profoundly decreased in aged control cells despite decreased proteasomal activity. This finding is related to a decreased polyubiquitination ability due to the impairment of the ubiquitin-activating enzyme in aged control cells, probably related to a more oxidative microenvironment. CR preserves the ubiquitin-proteasome system activity. Overall, we found that aging and CR modulate many aspects of protein modification and turnover.  相似文献   

4.
Kinetic study of the reaction between vitamin E radical and alkyl hydroperoxides has been performed, as a model for the reactions of lipid hydroperoxides with vitamin E radical in biological systems. The rates of reaction of hydroperoxides (n-butyl hydroperoxide 1, sec-butyl hydroperoxide 2, and tert-butyl hydroperoxide 3) with vitamin E radical (5,7-diisopropyl-tocopheroxyl 4) in benzene solution have been determined spectrophotometrically. The second-order rate constants, k-1, obtained are 1.34 x 10(-1) M-1s-1 for 1, 2.42 x 10(-1) M-1s-1 for 2, and 3.65 x 10(-1) M-1s-1 for 3 at 25.0 degrees C. The result indicates that the rate constants increase as the total electron donating capacity of the alkyl substituents at alpha-carbon atom of hydroperoxides increases. The above rates, k-1, are about seven order of magnitude lower than those, k1, for the reaction of vitamin E with peroxyl radical.  相似文献   

5.
The organic hydroperoxides tert-butyl hydroperoxide and cumene hydroperoxide are tumor promoters in the skin of SENCAR mice, and this activity is presumed to be mediated through the activation of the hydroperoxides to free radical species. In this study we have assessed the generation of free radicals from organic hydroperoxides in the target cell (the murine basal keratinocyte) using electron spin resonance. Incubation of primary isolates of keratinocytes from SENCAR mice in the presence of spin traps (5,5-dimethyl-1-pyrroline N-oxide or 2-methyl-2-nitrosopropane) and either tert-butyl hydroperoxide or cumene hydroperoxide resulted in the generation and detection of radical adducts of these spin traps. tert-Butyl alkoxyl and alkyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were detected shortly after addition of tert-butyl hydroperoxide, whereas only alkyl radical adducts were observed with cumene hydroperoxide. Spin trapping of the alkyl radicals with 2-methyl-2-nitrosopropane led to the identification of methyl and ethyl radical adducts following both tert-butyl hydroperoxide and cumene hydroperoxide exposures. Prior heating of the cells to 100 degrees C for 30 min prevented radical formation. The radical generating capacity of subcellular fractions of these epidermal cells was examined using 5,5-dimethyl-1-pyrroline N-oxide and cumene hydroperoxide, and this activity was confined to the 105,000 X g supernatant fraction.  相似文献   

6.
The pre-steady-state kinetics of the prostaglandin endoperoxide synthase oxygenase reaction with eicosadienoic acids and the cyclooxygenase reaction with arachidonic acid were investigated by stopped-flow spectrophotometry at 426 nm, an isosbestic point between native enzyme and compound I. A similar reaction mechanism for both types of catalysis is defined from combined kinetic experiments and numerical simulations. In the first step a fatty acid hydroperoxide reacts with the native enzyme to form compound I and the fatty acid hydroxide. In the second step the fatty acid reduces compound I to compound II and a fatty acid carbon radical is formed. This is followed by two fast steps: (1) the addition of either one molecule of oxygen (the oxygenase reaction) or two molecules of oxygen (the cyclooxygenase reaction) to the fatty acid carbon radical to form the corresponding hydroperoxyl radical, and (2) the reaction of the hydroperoxyl radical with compound II to form the fatty acid hydroperoxide and a compound I-protein radical. A unimolecular reaction of the compound I-protein radical to reform the native enzyme is assumed for the last step in the cycle. This is a slow reaction not significantly affecting steps 1 and 2 under pre-steady-state conditions. A linear dependence of the observed pseudo-first-order rate constant, k(obs), on fatty acid concentration is quantitatively reproduced by the model for both the oxygenase and cyclooxygenase reactions. The simulated second order rate constants for the conversion of native enzyme to compound I with arachidonic or eicosadienoic acids hydroperoxides as a substrate are 8 x 10(7) and 4 x 10(7) M(-1) s(-1), respectively. The simulated and experimentally obtained second-order rate constants for the conversion of compound I to compound II with arachidonic and eicosadienoic acids as a substrate are 1.2 x 10(5) and 3.0 x 10(5) M(-1) s(-1), respectively.  相似文献   

7.
ATP- and ubiquitin-independent proteolysis by the 20S proteasome is responsible for the selective degradation of oxidized proteins. In vitro, the 20S proteasome shows an increased proteolytic activity toward oxidized polypeptides and the suc-LLVY-MCA peptide specific for its chymotrypsin-like activity. We have analyzed the effect of the intracellular redox status on the chymotrypsin-like activity of the 20S proteasome in human T47D cells overexpressing the detoxifiant enzyme seleno-glutathione peroxidase-1 (GPx-1). We report a 30% decreased activity of the chymotrypsin-like activity in cells overexpressing GPx-1. This phenomenon correlated with a 2-fold increase in IkappaB alpha half-life, a protein whose basal turnover is 20S proteasome-dependent. Following exposure to H2O2, these cells showed a seleno-dependently decreased accumulation of intracellular reactive oxygen species and 20S proteasome chymotrypsin-like activity. Similar results were obtained in HeLa cells transiently overexpressing human GPx-1. Moreover, exposure of HeLa cells to antioxidant compounds reduced the proteasome 20S chymotrypsin-like activity. In contrast, no effects were observed when HeLa cell extracts used to determine proteasome activity were incubated with either reduced or oxidized glutathione. These results suggest that GPx-1 activity or pro-reducing conditions can downregulate basal 20S proteasome activity. Hence, the intracellular redox status, probably through the level of oxidized proteins, is an important element that can either activate or down-regulate the 20S proteasome chymotrypsin-like activity in living cells.  相似文献   

8.
Oxidized/cross-linked intracellular protein materials, known as ceroid pigment, age pigment, or lipofuscin, accumulate in postmitotic tissues. It is unclear, however, whether diminishing proteolytic capacities play a role in the accumulation of such oxidized intracellular proteins. Previous studies revealed that the proteasome is responsible for the degradation of most oxidized soluble cytoplasmic and nuclear proteins and, we propose, for the prevention of such damage accumulations. The present investigation was undertaken to test the changes in protein turnover, proteasome activity, lysosome activity, and protein oxidation status during the aging of nondividing cells. Since the companion paper shows that both proteasome activity and the overall protein turnover decline during proliferative senescence whereas the accumulation of oxidized proteins increases significantly, we decided to use the same human BJ fibroblasts, this time at confluency, at different PD levels (including those that are essentially postmitotic) to investigate the same parameters under conditions where cells do not divide. We find that the activity of the cytosolic proteasome declines dramatically during senescence of nondividing BJ fibroblasts. The peptidyl-glutamyl-hydrolyzing activity was particularly affected. This decline in proteasome activity was accompanied by a decrease in the overall turnover of short-lived (radiolabeled) proteins in the nondividing BJ fibroblasts. On the other hand, no decrease in the actual cellular proteasome content, as judged by immunoblots, was found. The decline in the activity of the proteasome was also accompanied by an increased accumulation of oxidized proteins, especially of oxidized and cross-linked material. Unlike the loss of lysosomal function seen in our accompanying studies of proliferative senescence (1), however, the present study of hyperoxic senescence in nondividing cells actually revealed marked increases in lysosomal cathepsin activity in all but the very 'oldest' postmitotic cells. Our comparative studies of proliferating (1) and nonproliferating (this paper) human BJ fibroblasts reveal a good correlation between the accumulation of oxidized/cross-linked proteins and the decline in proteasome activity and overall cellular protein turnover during in vitro senescence, which may predict a causal relationship during actual cellular aging.  相似文献   

9.
Murine and human macrophages rapidly decreased the level of cholesteryl ester hydroperoxides in low density lipoprotein (LDL) when cultured in media non-permissive for LDL oxidation. This process was proportional to cell number but could not be attributed to the net lipoprotein uptake. Macrophage-mediated loss of lipid hydroperoxides in LDL appears to be metal ion-independent. Degradation of cholesteryl linoleate hydroperoxides was accompanied by accumulation of the corresponding hydroxide as the major product and cholesteryl keto-octadecadienoate as a minor product, although taken together these products could not completely account for the hydroperoxide consumption. Cell-conditioned medium possessed a similar capacity to remove lipid hydroperoxides as seen with cellular monolayers, suggesting that the activity is not an integral component of the cell but is secreted from it. The activity of cell-conditioned medium to lower the level of LDL lipid hydroperoxides is associated with its high molecular weight fraction and is modulated by the availability of free thiol groups. Cell-mediated loss of LDL cholesteryl ester hydroperoxides is facilitated by the presence of alpha-tocopherol in the lipoprotein. Together with our earlier reports on the ability of macrophages to remove peroxides rapidly from oxidized amino acids, peptides, and proteins as well as to clear selectively cholesterol 7-beta-hydroperoxide, results presented in this paper provide evidence of a potential protective activity of the cell against further LDL oxidation by removing reactive peroxide groups in the lipoprotein.  相似文献   

10.
Manganese lipoxygenase (Mn-LOX) catalyzes the rearrangement of bis-allylic S-hydroperoxides to allylic R-hydroperoxides, but little is known about the reaction mechanism. 1-Linoleoyl-lysoglycerophosphatidylcholine was oxidized in analogy with 18:2n-6 at the bis-allylic carbon with rearrangement to C-13 at the end of lipoxygenation, suggesting a "tail-first" model. The rearrangement of bis-allylic hydroperoxides was influenced by double bond configuration and the chain length of fatty acids. The Gly316Ala mutant changed the position of lipoxygenation toward the carboxyl group of 20:2n-6 and 20:3n-3 and prevented the bis-allylic hydroperoxide of 20:3n-3 but not 20:2n-6 to interact with the catalytic metal. The oxidized form, Mn(III)-LOX, likely accepts an electron from the bis-allylic hydroperoxide anion with the formation of the peroxyl radical, but rearrangement of 11-hydroperoxyoctadecatrienoic acid by Mn-LOX was not reduced in D(2)O (pD 7.5), and aqueous Fe(3+) did not transfer 11S-hydroperoxy-9Z,12Z,15Z-octadecatrienoic acid to allylic hydroperoxides. Mutants in the vicinity of the catalytic metal, Asn466Leu and Ser469Ala, had little influence on bis-allylic hydroperoxide rearrangement. In conclusion, Mn-LOX transforms bis-allylic hydroperoxides to allylic by a reaction likely based on the positioning of the hydroperoxide close to Mn(3+) and electron transfer to the metal, with the formation of a bis-allylic peroxyl radical, beta-fragmentation, and oxygenation under steric control by the protein.  相似文献   

11.
Hydroperoxides are major reaction products of radicals and singlet oxygen with amino acids, peptides, and proteins. However, there are few data on the distribution of hydroperoxides in biological samples and their sites of formation on peptides and proteins. In this study we show that normal-or reversed-phase gradient HPLC can be employed to separate hydroperoxides present in complex systems, with detection by postcolumn oxidation of ferrous xylenol orange to the ferric species and optical detection at 560 nm. The limit of detection (10-25 pmol) is comparable to chemiluminescence detection. This method has been used to separate and detect hydroperoxides, generated by hydroxyl radicals and singlet oxygen, on amino acids, peptides, proteins, plasma, and intact and lysed cells. In conjunction with EPR spin trapping and LC/MS/MS, we have obtained data on the sites of hydroperoxide formation. A unique fingerprint of hydroperoxides formed at alpha-carbon (backbone) positions has been identified; such backbone hydroperoxides are formed in significant yields only when the amino acid is part of a peptide or protein. Only side-chain hydroperoxides are detected with free amino acids. These data indicate that free amino acids are poor models of protein damage induced by radicals or other oxidants.  相似文献   

12.
The generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of several oligopeptides was investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap. Incubation of Ni2+ with cumene hydroperoxide or t-butyl hydroperoxide did not generate any detectable free radical. In the presence of glycylglycylhistidine (GlyGlyHis), however, Ni2+ generated cumene peroxyl (ROO.) radical from cumene hydroperoxide, with the free radical generation reaching its saturation level within about 3 min. The reaction was first order with respect to both cumene hydroperoxide and Ni2+. Similar results were obtained using t-butyl hydroperoxide, but the yield of t-butyl peroxyl radical generation was about 7-fold lower. Other histidine-containing oligopeptides such as beta-alanyl-L-histidine (carnosine), gamma-aminobutyryl-L-histidine (homocarnosine), and beta-alanyl-3-methyl-L-histidine (anserine) caused the generation of both cumene alkyl (R.) and cumene alkoxyl (RO.) radicals in the reaction of Ni2+ with cumene hydroperoxide. Similar results were obtained using t-butyl hydroperoxide. Glutathione also caused generation of R. and RO. radicals in the reaction of Ni2+ with cumene hydroperoxide but the yield was approximately 25-fold greater than that produced by the histidine-containing peptides, except GlyGlyHis. The ratio of DMPO/R. and DMPO/RO. produced with glutathione and cumene hydroperoxide was approximately 3:1. Essentially the same results were obtained using t-butyl hydroperoxide except that the ratio of DMPO/R. to DMPO/RO. was approximately 1:1. The free radical generation from cumene hydroperoxide reached its saturation level almost instantaneously while in the case of t-butyl hydroperoxide, the saturation level was reached in about 3 min. In the presence of oxidized glutathione, the Ni2+/cumene hydroperoxide system caused DMPO/.OH generation from DMPO without forming free hydroxyl radical. Since glutathione, carnosine, homocarnosine, and anserine are considered to be cellular antioxidants, the present work suggests that instead of protecting against oxidative damage, these oligopeptides may facilitate the Ni(2+)-mediated free radical generation and thus may participate in the mechanism(s) of Ni2+ toxicity and carcinogenicity.  相似文献   

13.

Background and aims

Hyperhomocysteinemia (HHcy) is associated with cardiovascular diseases and is thought to induce endogenous oxidative stress and causes many cellular damages. Proteasome that degrades oxidized and ubiquitinated proteins can regulate the cellular response to oxidative stress. We aimed to investigate whether hyperhomocysteinemia induces oxidative stress and alters proteasome function and composition in heart and aorta tissues of rat.

Methods and results

To create hyperhomocysteinemia, male Wistar rats (Pasteur Institute-Algiers) were received daily intraperitoneal injections of dl-homocysteine (0.6–1.2 μM/g body weight) for 3 weeks. Biomarkers of oxidative stress (malondialdehyde (MDA), protein carbonyl (PC), superoxide dismutase (SOD) and catalase (CAT)) were first measured by biochemical methods and tissue damages by histological sections. Proteasome activities were quantitated using fluorogenic synthetic peptides; ubiquitinated proteins and proteasome subunits expression were then evaluated by SDS PAGE and Western blot analysis. We showed increased MDA and PC but decreased SOD and CAT levels both in plasma, heart and aorta accompanied by histological changes. A significant decrease of proteasome activities was observed in heart, whereas proteasome activity was not affected in aorta. However proteasome composition was altered in both tissues, as the accumulation of ubiquitinated proteins.

Conclusion

Data demonstrated an alteration of the ubiquitin–proteasome system in hyperhomocysteinemia as a result of accumulating oxidized and ubiquitinated proteins in response to oxidative stress. Further studies must be conducted to better understanding mechanisms responsible of proteasome alterations in hyperhomocysteinemia.  相似文献   

14.
Inhibition of Ehrlich ascites carcinoma respiration by aqueous extracts of oxidized linoleic or linolenic acid (aqueous emulsions UV-irradiated, 90 min) was associated entirely with relatively involatile compounds which were both thiobarbituric acid (TBA)-reactive and peroxidase-reactive. Inhibitory compounds were heat stable and migrated in thin-layer chromatography with aldehydes, "hydroperoxides," and TBA-reactive compounds. Peroxidase-catalyzed reduction of the "hydroperoxide" diminished the inhibition. At 4.7 x 10(-5) M "hydroperoxide" concentration, the residues from both linoleic and linolenic acid inhibited tumor oxygen consumption to a similar degree. However, at this concentration of "hydroperoxide" only the dried extract from linolenic acid was able to produce inhibition (100%) of aerobic glucose utilization by tumor cells. No glycolytic inhibition by the dried residue of oxidized linoleic acid was observed. At least 12 compounds (approximate chain length, 7C-13C) containing alpha,Beta-unsaturated carbonyl groups were isolated by gas-liquid chromatography (GLC) of dried extracts of oxidized linolenic acid. No single fraction inhibited tumor respiration, but the recombined mixture of all compounds caused complete respiratory inhibition of ascites tumor cells. Less material was required to inhibit oxygen consumption before than after GLC presumably because the more highly inhibitory components of the extract (along with "hydroperoxides" and TBA-reactive compounds) were lost during GLC. Extracts from oxidized linolenic acid were found to produce in all tumor cells cytoplasmic evaginations which were readily detected by phase microscopy.  相似文献   

15.
The oxygenation of polyunsaturated fatty acids by lipoxygenases (LOX) is associated with a lag phase during which the resting ferrous enzyme is converted to the active ferric form by reaction with fatty acid hydroperoxide. Epidermal lipoxygenase-3 (eLOX3) is atypical in displaying hydroperoxide isomerase activity with fatty acid hydroperoxides through cycling of the ferrous enzyme. Yet eLOX3 is capable of dioxygenase activity, albeit with a long lag phase and need for high concentrations of hydroperoxide activator. Here, we show that higher O(2) concentration shortens the lag phase in eLOX3, although it reduces the rate of hydroperoxide consumption, effects also associated with an A451G mutation known to affect the disposition of molecular oxygen in the LOX active site. These observations are consistent with a role of O(2) in interrupting hydroperoxide isomerase cycling. Activation of eLOX3, A451G eLOX3, and soybean LOX-1 with 13-hydroperoxy-linoleic acid forms oxygenated end products, which we identified as 9R- and 9S-hydroperoxy-12S,13S-trans-epoxyoctadec-10E-enoic acids. We deduce that activation partly depends on reaction of O(2) with the intermediate of hydroperoxide cleavage, the epoxyallylic radical, giving an epoxyallylic peroxyl radical that does not further react with Fe(III)-OH; instead, it dissociates and leaves the enzyme in the activated free ferric state. eLOX3 differs from soybean LOX-1 in more tightly binding the epoxyallylic radical and having limited access to O(2) within the active site, leading to a deficiency in activation and a dominant hydroperoxide isomerase activity.  相似文献   

16.
The implication of the released peptides in allosteric effects during protein degradation catalyzed by the proteasome is an important question not completely resolved. We present here data showing modulation of 26S proteasome activities by peptides composed of 5 or 6 natural amino acids that mimic the products generated during protein breakdown. Several of these peptides inhibit the chymotrypsin-like activity of the Xenope 26S proteasome whereas its trypsin-like activity is enhanced. The basic peptides produced competitive inhibition of the chymotrypsin-like activity and the acidic peptides, parabolic inhibition involving two different binding sites. Our results are in agreement with a model involving hypothetical non-catalytic sites interacting with effectors to modulate the peptidase activities of the proteasome. They also suggest that allosteric effects may occur in the proteasome during protein degradation.  相似文献   

17.
Tyrosine nitration is a covalent posttranslational protein modification that has been detected under several pathological conditions. This study reports that nitrated proteins are degraded by chymotrypsin and that protein nitration enhances susceptibility to degradation by the proteasome. Chymotrypsin cleaved the peptide bond between nitrated-tyrosine 108 and serine 109 in bovine Cu,Zn superoxide dismutase. However, the rate of chymotryptic cleavage of nitrated peptides was considerably slower than control. In contrast, nitrated bovine Cu,Zn superoxide dismutase was degraded at a rate 1. 8-fold faster than that of control by a gradient-purified 20S/26S proteasome fraction from bovine retina. Exposure of PC12 cells to a nitrating agent resulted in the nitration of tyrosine hydroxylase and a 58 +/- 12.5% decline in the steady-state levels of the protein 4 h after nitration. The steady-state levels of tyrosine hydroxylase were restored by selective inhibition of the proteasome activity with lactacystin. These data indicate that nitration of tyrosine residue(s) in proteins is sufficient to induce an accelerated degradation of the modified proteins by the proteasome and that the proteasome may be critical for the removal of nitrated proteins in vivo.  相似文献   

18.
Methods were developed for the separation and measurement of lipid and protein hydroperoxides, which can be used for biological materials. Lipids were extracted with methanol:chloroform and their hydroperoxides measured in solutions of methanol and chloroform containing 110mM perchloric acid, xylenol orange, and ferrous iron. Proteins were isolated by precipitation with 0.2M perchloric acid. The precipitates were redissolved in 6M guanidine hydrochloride and washed with chloroform, and the hydroperoxides were measured in the presence of perchloric acid, xylenol orange, and ferrous iron. Optimum conditions for hydroperoxide measurements were established and the assays were applied to oxidized human blood serum and to cultured cells.  相似文献   

19.
Oxidized and cross-linked proteins tend to accumulate in aging cells. Declining activity of proteolytic enzymes, particularly the proteasome, has been proposed as a possible explanation for this phenomenon, and direct inhibition of the proteasome by oxidized and cross-linked proteins has been demonstrated in vitro. We have further examined this hypothesis during both proliferative senescence (this paper) and postmitotic senescence (see the accompanying paper, ref 1 ) of human BJ fibroblasts. During proliferative senescence, we found a marked decline in all proteasome activities (trypsin-like activity, chymotrypsin-like activity, and peptidyl-glutamyl-hydrolyzing activity) and in lysosomal cathepsin activity. Despite the loss of proteasome activity, there was no concomitant change in cellular levels of actual proteasome protein (immunoassays) or in the steady-state levels of mRNAs for essential proteasome subunits. The decline in proteasome activities and lysosomal cathepsin activities was accompanied by dramatic increases in the accumulation of oxidized and cross-linked proteins. Furthermore, as proliferation stage increased, cells exhibited a decreasing ability to degrade the oxidatively damaged proteins generated by an acute, experimentally applied oxidative stress. Thus, oxidized and cross-linked proteins accumulated rapidly in cells of higher proliferation stages. Our data are consistent with the hypothesis that proteasome is progressively inhibited by small accumulations of oxidized and cross-linked proteins during proliferative senescence until late proliferation stages, when so much proteasome activity has been lost that oxidized proteins accumulate at ever-increasing rates. Lysosomes attempt to deal with the accumulating oxidized and cross-linked proteins, but declining lysosomal cathepsin activity apparently limits their effectiveness. This hypothesis, which may explain the progressive intracellular accumulation of oxidized and cross-linked proteins in aging, is further explored during postmitotic senescence in the accompanying paper (1).  相似文献   

20.
Lipid peroxidase activity in rat liver was studied. Rat liver cytosolic fraction was found to be capable of reducing lipid hydroperoxides. On the contrary, no lipid hydroperoxide reduction was observed in microsomes. It was found that at least two proteins in rat liver cytosol are capable of reducing phospholipid hydroperoxides. One of them is precipitated by 33-55% at (NH4)2SO4 saturation and requires reduced glutathione (GSH) as a hydrogen donor, while the other one is precipitated by 55-80% at (NH4)2SO4 saturation and reduces phospholipid hydroperoxides in the presence of a unidentified low molecular weight cytosolic factor, but not GSH or NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号