首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous transfection experiments using a zinc-inducible expression vector have shown that overexpression of insulin-like growth factor II (IGFII) in MCF7 human breast cancer cells can reduce dependence on oestrogen for cell growth in vitro (DALY RJ, HARRIS WH, WANG DY, DARBRE PD. (1991) Cell Growth Differentiation 2, 457-464.). Parallel transfections now performed into another oestrogen-dependent human breast cancer cell line (ZR-75-1) yielded three clones of transfected ZR-75-1 cells that produced levels of zinc-inducible IGFII mRNA and secreted mature IGFII protein similar to those found in the transfected MCF7 cells. However, unlike in MCF7 cells, no resulting effects were found on cell growth in the ZR-75-1 clones, even though the ZR-75-1 clones possessed receptors capable of binding 125I-IGFI and showed a growth response to exogenously added IGFII. Medium conditioned by the ZR-75-1 clones could stimulate growth of untransfected MCF7 cells, indicating that the secreted IGFII protein was bioactive. Furthermore, zinc-induced IGFII was capable of increasing both pS2 mRNA levels and CAT activity from a transiently transfected AP1-CAT gene in the ZR-75-1 clones. Constitutive co-overexpression of the protein processing enzyme PC2 resulted in reduced levels of large forms of zinc-inducible IGFII, but zinc treatment still produced no effect on cell growth rate. Finally, however, constitutive co-overexpression of the type I IGF receptor (IGFIR) did result in zinc-inducible increased basal cell growth and reduced dependence on oestrogen for cell growth. These results demonstrate that while overexpression of IGFII per se was sufficient to deregulate MCF7 cell growth, the ZR-75-1 cells are limited in their proliferative response by their intrinsic receptor levels. However, although the proliferative response was limited, molecular responses (expression of pS2 and AP1-CAT) were not limited, indicating that different cellular responses can have different threshold receptor level requirements.  相似文献   

3.
Ki-ras gene mutations that specifically occur in codons 12, 13 and 61 are involved in the carcinogenesis of acute myeloid leukemia, melanoma and different carcinomas. In order to define potential mutation-specific therapeutic targets, stable transfectants of NIH3T3 cells carrying different Ki-ras4B gene mutations were generated. Wild type Ki-ras transformants, mock transfectants and parental cells served as controls. These in vitro model systems were systematically analyzed for their protein expression pattern using two-dimensional gel electrophoresis followed by mass spectrometry and/or protein sequencing. Using this approach, a number of target molecules that are differentially but coordinately expressed in the ras transfectants were identified next to other proteins that exhibit a distinct regulation pattern in the different cell lines analyzed. The differentially expressed proteins predominantly belong to the families of cytoskeletal proteins, heat shock proteins, annexins, metabolic enzymes and oxidoreductases. Their validation was assessed by real-time quantitative RT-PCR and/or Western blot analysis. Our results suggest that the Ki-ras-transformed cells represent a powerful tool to study Ki-ras gene mutation-driven protein expression profiles. In addition, this approach allows the discovery of ras-associated cellular mechanisms, which might lead to the identification of physiological targets for pharmacological interventions of the treatment of Ki-ras-associated human tumors.  相似文献   

4.
BACKGROUND: The potential use of gene therapy for cancer treatment is being intensively studied. One approach utilises the expression of genes encoding cytotoxic proteins. Such proteins can affect cellular viability, for example by inhibiting the translation machinery or disturbing membrane integrity. The bacteriophage Lambda (lambda)-holin protein is known to form a lesion in the cytoplasmic membrane of E. coli, triggering bacterial cell lysis and thereby enabling the release of new bacteriophage particles. The aim of this study was to evaluate whether the lambda-holin protein has a cytotoxic impact on eukaryotic cells and whether it holds potential as a new therapeutic protein for cancer gene therapy. METHODS: To explore this possibility, stably transfected human cell lines were established that harbour a tetracycline (Tet)-inducible system for controlled expression of the lambda-holin gene. The effect of the lambda-holin protein on eukaryotic cells was studied in vitro by applying several viability assays. We also investigated the effect of lambda-holin gene expression in vivo using a human breast cancer cell tumour xenograft as well as a syngeneic mammary adenocarcinoma mouse model. RESULTS: The lambda-holin-encoding gene was inducibly expressed in eukaryotic cells in vitro. Expression led to a substantial reduction of cell viability of more than 98%. In mouse models, lambda-holin-expressing tumour cell xenografts revealed significantly reduced growth rates in comparison to xenografts not expressing the lambda-holin gene. CONCLUSIONS: The lambda-holin protein is cytotoxic for eukaryotic cells in vitro and inhibits tumour growth in vivo suggesting potential therapeutic use in cancer gene therapy.  相似文献   

5.
Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.  相似文献   

6.
Side population (SP) cells in primary tumors and cell lines are a small cell population, but they are known to enrich cancer stem cells (CSCs). In this study, we isolated SP cells from the human breast cancer cell line MCF7 as a model for studying CSCs. Compared with non-SP cells, MCF7 SP cells had higher mammosphere-formation efficiency (MFE) in vitro and greater tumorigenicity in vivo, suggesting that MCF7 SP cells enrich CSCs. We first directly compared the gene expression profile of SP and non-SP cells from MCF7 cell line. Comparing the expression signature of SP to non-SP cells, we identified 753 differentially expressed genes (DEGs). Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified multiple pathways that were aberrantly regulated in SP compared with non-SP cells. Several pathways, including cell junction and apoptosis, play important roles in breast CSC function. This study demonstrates that combining global gene expression analysis with detailed annotated pathway resources can enhance our understanding of the critical pathways that regulate breast CSCs.  相似文献   

7.
Transfection of wild-type p53 into a pre-B, p53 nonproducer cell line yielded the generation of stable clones. Although constitutively expressing the growth-suppressor wild-type p53 protein, these cells proliferate continuously in vitro. However, expression of wild-type p53 in these cells altered their cell cycle pattern and reduced their growth in vivo. When the same parental cells were transfected with a plasmid coding for a wild-type p53 lacking nuclear localization signals, a wild-type cytoplasmic p53 protein was expressed. Expression of this cytoplasmic p53 product did not exert any changes in the growth of the parental cells, suggesting that wild-type p53 affects the cell cycle only when localized in the nuclear cell compartment.  相似文献   

8.
Analysis of differential protein expression in the cytosol of melphalan-resistant and -susceptible MCF-7 cell lines has been carried out using a combination of two-dimensional gel electrophoresis, mass spectrometry, and bioinformatics. Comparison of multiple digitized gel arrays detected several spots as candidates for differentially expressed proteins in melphalan-resistant MCF-7 cells. The up-regulated proteins included retinoic acid binding protein II, an isoform of the macrophage migration inhibition factor, and other unidentified proteins. The down-regulated proteins included calreticulin, cyclophin A, and an isoform of the 27 kD heat shock protein. Correlation of the differential expression of some of the proteins with acquired resistance of MCF7 cells to melphalan is discussed.  相似文献   

9.
10.
Kim JH  Kim WS  Kang JH  Lim HY  Ko YH  Park C 《FEBS letters》2007,581(4):623-628
To investigate the effect of Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) on human cancer cells, we sought to identify and analyze potential target genes that were differentially expressed in the presence and absence of LMP1. Our cDNA microarray analysis revealed that expression of early growth response gene-1 (Egr-1) was increased by LMP1 expression in MCF7 and Jurkat cells. An NFkappaB inhibitor (SN50) antagonized LMP1-induced enhancement of Egr-1 expression, indicating that LMP1 induced Egr-1 via NFkappaB. Furthermore, three lines of evidence indicated that Egr-1 was required for LMP1-induced cancer cell survival. First, Egr-1 expression enhanced the survival of doxorubicin-treated MCF7 cells. Second, inhibition of Egr-1 expression by siRNA (siEgr-1) effectively suppressed LMP-1-induced survival of MCF7 cells. Third, Egr-1 knockdown decreased LMP1-induced expression of Bfl-1. Similar relationships among EBV infection, Egr-1 and drug resistance were also observed in tissues of peripheral T-cell lymphoma-unspecified (PTCL-u) patients.  相似文献   

11.
12.
13.
Interferon-stimulated gene 15 (ISG15) is an ubiquitin-like protein, which can either be found as a free protein or covalently-bound to target proteins via ISGylation. The functions of free and conjugated ISG15 are ambiguous in tumorigenesis owing to its roles as an oncogene and a tumour suppressor gene. This dual role for ISG15 could be a result of the cancer cell type and the cellular context. Here, we report that ISG15 expression is upregulated in different cancer cells compared to normal cells. Furthermore, we found higher endogenous, free ISG15 protein levels in MCF7 breast cancer cells than in other cells, suggesting that non-conjugated ISG15 levels are cell type-specific. Additionally, we demonstrated that interferon gamma (IFN-?) increased both free and conjugated levels of ISG15 in MCF7 cells. Interestingly, endogenous conjugated and free ISG15 levels were differentially regulated by IFN-? in several cell lines. On characterisation of the subcellular distribution of ISG15 in several cell types, our results indicated that free ISG15 was mainly localised to the cytoplasm of MCF7 cells, whereas ISGylation marks were also found in the cytoplasm, but mainly in the nucleus, with a specific distribution pattern in each cell type. Thus, free and conjugated ISG15 protein levels and their subcellular distribution are cell type-dependent, whereas IFN-? signalling may differentially control the abundance of both ISG15 forms in transformed and normal cells.  相似文献   

14.
The goal of the present study is to unveil the gene expression profile specific to the biological processes of human breast epithelial cell invasion and migration using an MCF10A model genetically engineered to constitutively activate the H-ras or N-ras signaling pathway. We previously showed that H-Ras, but not N-Ras, induces MCF10A cell invasion/migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. Thus, these cell lines provide an experimental system to separate the gene expression profile associated with cell invasion apart from cell proliferation/transformation. Analysis of whole human genome microarray revealed that 412 genes were differentially expressed among MCF10A, N-Ras MCF10A, and H-Ras MCF10A cells and hierarchical clustering separated 412 genes into four clusters. We then tested whether S100A8 and S100A9, two of the genes which are most highly up-regulated in an H-Ras-specific manner, play a causative role for H-Ras-mediated MCF10A cell invasion and migration. Importantly, small interfering RNA-mediated knockdown of S100A8/A9 expression significantly reduced H-Ras-induced invasion/migration. Conversely, the induction of S100A8/A9 expression conferred the invasive/migratory phenotype to parental MCF10A cells. Furthermore, we provided evidence of signaling cross-talk between S100A8/A9 and the mitogen-activated protein kinase signaling pathways essential for H-Ras-mediated cell invasion and migration. Taken together, this study revealed S100A8/A9 genes as candidate markers for metastatic potential of breast epithelial cells. Our gene profile data provide useful information which may lead to the identification of additional potential targets for the prognosis and/or therapy of metastatic breast cancer.  相似文献   

15.
Previously, we cloned a full-length cDNA of human Aup1 and showed that AUP1 may represent a new cellular target for the two adenovirus oncoproteins, E1A Ad5 and E4ORF3. In this study, we generated a polyclonal anti-AUP1 antibody and examined the subcellular localization of AUP1 in MCF7 cells, HeLa cells, H1299 cells, 293 cells, BRK1 cells and transfectants expressing adenoviruse E1 genes. Double staining of AUP1 and various markers for cytoplasmic structures showed that the pattern of AUP1 distribution in the cytoplasm was puctuate and diffuse and without any colocalization with Golgi apparatus or endoplasmic reticulum. Additional studies with ectopically expressed AUP1, fused with red fluorescent protein (RFP) in H1299 and McG7 human cell lines and BRK1 rat cell line, showed cytoplasmic localization of RFP-AUP1. Western blot analysis revealed that AUP1 was expressed at similar levels in all tested cell lines and had the same molecular weight as the rat protein (45 kDa). Taken together, these results suggest that AUP1 is a cytoplasmic protein that is expressed in all cell lines we examined.  相似文献   

16.
PRL-1 is a particularly interesting immediate-early gene because it is induced in mitogen-stimulated cells and regenerating liver but is constitutively expressed in insulin-treated rat H35 hepatoma cells, which otherwise show normal regulation of immediate-early genes. PRL-1 is expressed throughout the course of hepatic regeneration, and its expression is elevated in a number of tumor cell lines. Sequence analysis reveals that PRL-1 encodes a 20-kDa protein with an eight-amino-acid consensus protein tyrosine phosphatase (PTPase) active site. PRL-1 is able to dephosphorylate phosphotyrosine substrates, and mutation of the active-site cysteine residue abolishes this activity. As PRL-1 has no homology to other PTPases outside the active site, it is a new type of PTPase. PRL-1 is located primarily in the cell nucleus. Stably transfected cells which overexpress PRL-1 demonstrate altered cellular growth and morphology and a transformed phenotype. It appears that PRL-1 is important in normal cellular growth control and could contribute to the tumorigenicity of some cancer cells.  相似文献   

17.
Human c-fos cDNA was transfected into normal rat liver epithelial (REL) cells to identify cellular modifications associated with high expression of c-Fos protein. Responses to EGF and TGF beta were examined in the different cell lines, under anchorage-dependent and -independent conditions. Sensitivity to both factors was modified in transfected cells. While parental cells in monolayer did not respond to EGF, c-fos containing cells growth was stimulated by this factor. Overexpression of c-Fos protein led to an enhanced TGF beta-induced growth inhibition under anchorage dependent conditions, and TGF beta abolished spontaneous growth in soft agar of the cell lines containing c-fos oncogene. The mechanisms underlying the increased sensitivity to TGF beta in c-fos transfected cells are still to be determined.  相似文献   

18.
19.
KEPI is a protein kinase C-potentiated inhibitory protein for type 1 Ser/Thr protein phosphatases. We found no or reduced expression of KEPI in breast cancer cell lines, breast tumors and metastases in comparison to normal breast cell lines and tissues, respectively. KEPI protein expression and ubiquitous localization was detected with a newly generated antibody. Ectopic KEPI expression in MCF7 breast cancer cells induced differential expression of 95 genes, including the up-regulation of the tumor suppressors EGR1 (early growth response 1) and PTEN (phosphatase and tensin homolog), which is regulated by EGR1. We further show that the up-regulation of EGR1 in MCF7/KEPI cells is mediated by MEK-ERK signaling. The inhibition of this pathway by the MEK inhibitor UO126 led to a strong decrease in EGR1 expression in MCF7/KEPI cells. These results reveal a novel role for KEPI in the regulation of the tumor suppressor gene EGR1 via activation of the MEK-ERK MAPK pathway.  相似文献   

20.
The human breast cancer cell line MCF7 does not express heart-type fatty acid binding protein (H-FABP), a marker protein for differentiated mammary gland. MCF7 cells transfected with the bovine H-FABP cDNA expressed the corresponding protein and were characterized by growth inhibition and lower tumorgenicity in nude mice [22]. By enzyme linked immunoassay we now determined the amount of bovine H-FABP in these cells as 638 ± 80 ng/mg protein and used the transfected cells to study the role of H-FABP in fatty acid metabolism. Compared to control cells the uptake of radioactively labelled palmitic acid and oleic acid into MCF7 cells after 30 or 60 min was increased by 67% in H-FABP expressing transfectants, demonstrating a stimulatory role for this FABP-type in fatty acid metabolism. However, preferential targeting of [14C]oleic acid into neutral or phospholipid classes was not observed by the criterion of high performance thin layer chromatography followed by autoradiography. A reason for the modest increase of fatty acid uptake in H-FABP transfected MCF7 cells may be the basal expression of epidermal-type FABP, which was detected for the first time in these cells. It appears that the small amount of E-FABP expressed in MCF7 cells fulfils the need of the cells for a cytosolic fatty acid carrier under culture conditions and that even high concentrations of another FABP do only slightly increase the uptake due to limitations of fatty acid transport through the plasma membrane or of metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号