首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunogold technique has been used in electron microscopy to detect cytoplasmic and extracellular antigens by postembedding techniques. It has also been used to detect plasma-membrane-associated molecules on suspended cells and, recently, to visualise cell surface antigens in ultrathin sections of Lowicryl embedded specimens. In the present study, cell surface antigens of rat kidney and human skin were identified in tissue sections by using pre-embedding immunogold labeling. Brush border microvillar antigens and dermal lymphocyte antigens both bound numerous gold particles. The immunogold staining described here has the advantage over immunoperoxidase procedures that it is not subject to diffusion or reabsorption artifacts, and allows estimation of the antigen density on labeled cells. Furthermore, this pre-embedding immunogold technique is ideally suited to detecting cell surface-associated antigens since it preserves antigenicity, allows gold particle penetration and enhances cell membrane profiles.  相似文献   

2.
The immunogold technique has been used in electron microscopy to detect cytoplasmic and extracellular antigens by postembedding techniques. It has also been used to detect plasma-membrane-associated molecules on suspended cells and, recently, to visualize cell surface antigens in ultrathin sections of Lowicryl embedded specimens. In the present study, cell surface antigens of rat kidney and human skin were identified in tissue sections by using pre-embedding immunogold labeling. Brush border microvillar antigens and dermal lymphocyte antigens both bound numerous gold particles. The immunogold staining described here has the advantage over immunoperoxidase procedures that is not subject to diffusion or reabsorption artifacts, and allows estimation of the antigen density on labeled cells. Furthermore, this pre-embedding immunogold technique is ideally suited to detecting cell surface-associated antigens since it preserves antigenicity, allows gold particle penetration and enhances cell membrane profiles.  相似文献   

3.
A double immunogold-labeling method in immunoelectron microscopy was used for simultaneous detection of two antigens by monoclonal antibodies [OKT 8 (CD 8), anti-Leu-7, anti-Leu-11b (CD 16)] on lymphocytes in suspension. The combination of gold probe size (5 nm and 15 nm) and monoclonal antibody was found to be decisive for detecting double-labeled cells with the OKT 8+, Leu-11b+ phenotype. The combinations of OKT 8 labeled with the 5-nm gold probe (OKT 8(5] and anti-Leu-11b with the 15-nm gold probe (Leu-11b15) gave double-labeled cells; the reverse situation, using OKT 8 with a 15-nm gold probe (OKT 8(15] and anti-Leu-11b with a 5-nm gold probe (Leu-11b5), did not. Double-labeled OKT 8+, Leu-7+ cells were detected irrespective of which gold probe combination was applied. Our findings indicate that although the double immunogold-labeling method is well suited for study of lymphocyte subsets, it is important to determine suitable combinations of gold probe sizes and monoclonal antibodies for the lymphocyte subset under study, taking into account surface antigen density, so that double labeling ensues.  相似文献   

4.
We used the immunogold-silver staining method (IGSS) for detection of lymphocyte cell surface antigens with monoclonal antibodies in light and electron microscopy and compared this procedure with the immunogold staining method. Two different sizes of colloidal gold particles (5 nm and 15 nm) were used in this study. Immunolabeling on cell surfaces was visualized as fine granules only by IGSS in light microscopy. The labeling density (silver-gold complexes/cell) and diameters of silver-enhanced gold particles on cell surfaces were examined by electron microscopy. Labeling density was influenced not by the enhancement time of the physical developer but by the size of the gold particles. However, the development of shells of silver-enhanced gold particles correlated with the enhancement time of the physical developer rather than the size of the colloidal gold particles. Five-nm gold particles enhanced with the physical developer for 3 min were considered optimal for this IGSS method because of reduced background staining and high specific staining in the cell suspensions in sheep lymph. Moreover, this method may make it possible to show the ultrastructure of identical positive cells detected in 1-micron sections counterstained with toluidine blue by electron microscopy, in addition to the percentage of positive cells by light microscopy.  相似文献   

5.
The availability of 1-nm gold particles permits the use of a particulate label with standard pre-embedding electron microscopic immunocytochemical techniques. We have employed these particles to localize a synaptic vesicle protein, p65, and a growth-associated protein, GAP-43, in neuron cell cultures. To be detected by standard transmission electron microscopy, these ultra-small gold particles must be enlarged. We have applied a commercially available silver development kit (IntenseM), the method of Danscher, and a neutral pH development procedure which we developed to effect this enlargement. Although IntenseM permits development with good preservation of morphology, it is limited by lack of reproducibility and by variability of final particle size. The method of Danscher provides well-controlled and reproducible enlargement, but is limited with respect to preservation of ultrastructural details. The neutral pH development procedure reproducibly enlarges gold particles with superior preservation of morphology. The use of this development procedure in conjunction with 1-nm gold probes should permit precise ultrastructural localization of a variety of intracellular antigens.  相似文献   

6.
The potential of ultrasmall gold particles for the light microscopical detection of leukocyte cell surface differentiation antigens was investigated. Suspensions and cytocentrifuge preparations of peripheral blood leukocytes were first incubated with monoclonal antibodies and then with goat antimouse antibodies coupled to colloidal gold particles of 1-nanometer diameter. Cytocentrifuge preparations were made from the cell suspensions. Silver enhancement was performed on all preparations. Then they were counterstained with May-Grünwald Giemsa and examined in light microscopy. The immunostaining appeared as fine dark granules on the surface membrane of the cells. Labeling conditions were determined which gave a dense specific immunostaining and a low background. High dilutions of the ultrasmall gold probe could be used to detect all antigen expressing cells in the samples. The labeling efficiency of the IGSS method with the 1 nanometer probe was comparable to that described earlier for 5 nanometer gold particles. Lymphocyte subsets enumerated with this method in normal peripheral blood were similar to those found with immunofluorescence microscopy. We concluded that one nanometer probes do not offer a major advantage in comparison with 5 nanometer probes for the study of cell surface antigens.  相似文献   

7.
Summary The potential of ultrasmall gold particles for the light microscopical detection of leukocyte cell surface differentiation antigens was investigated. Suspensions and cytocentrifuge preparations of peripheral blood leukocytes were first incubated with monoclonal antibodies and then with goat antimouse antibodies coupled to colloidal gold particles of 1-nanometer diameter. Cytocentrifuge preparations were made from the cell suspensions. Silver enhancement was performed on all preparations. Then they were counterstained with May-Grünwald Giemsa and examined in light microscopy. The immunostaining appeared as fine dark granules on the surface membrane of the cells. Labeling conditions were determined which gave a dense specific immunostaining and a low background. High dilutions of the ultrasmall gold probe could be used to detect all antigen expressing cells in the samples. The labeling efficiency of the IGSS method with the 1 nanometer probe was comparable to that described earlier for 5 nanometer gold particles. Lymphocyte subsets enumerated with this method in normal peripheral blood were similar to those found with immunofluorescence microscopy. We concluded that one nanometer probes do not offer a major advantage in comparison with 5 nanometer probes for the study of cell surface antigens.  相似文献   

8.
Summary CD63 is a 53 kDa lysosomal membrane glycoprotein that has been identified as a platelet activation molecule. We investigated the localization of CD63 antigen in platelets and in three megakaryocytic cell lines (K562, HEL and CMK11-5) using flow cytometry and immunoelectron microscopy. Flow cytometry showed that a monoclonal antibody directed against CD63 bound to 8.1% of unstimulated platelets and 59.2% of thrombin-stimulated platelets. Immunoelectron microscopy demonstrated that CD63 antigen was distributed randomly inside unstimulated platelets, while it was localized in the open canalicular system of washed platelets and on the cell membranes of thrombin-stimulated platelets. Flow cytometry detected CD63 on 16.4% of HEL cells, 31.2% of K562 cells, and 43.2% of CMK11-5 cells. Immunoelectron microscopy demonstrated that CD63 was localized in the granules and on the surface membranes of HEL cells, in the vesicles and on the membranes of K562 cells, and in the granules and vesicles as well as on the membranes of CMK11-5 cells. Thus, the distribution of CD63 differed markedly among these three megakaryocytic cell lines.  相似文献   

9.
Abstract Three neutralizing monoclonal antibodies (mAbs) that are specific against bovine herpes virus Type-1 (BHV-1) were studied as to their viral specificity by immunoperoxidase and immunoelectron microscopy. Microscopic examination of GBK BHV-1 infected cells revealed peroxidase activity represented by red-brown granular deposits in the nucleus and cytoplasm. No immunoperoxidase activity was observed in negative controls. For the ultrastructural observations, two approaches were used. Firstly we tested a pre-embedding technique using GBK infected cells, mAbs and gold conjugated-protein A. Gold particles were observed linked to the viral envelopes and to the host cell membrane. Alternatively, a second technique employed BHV-1 purified by potassium tartrate gradients, mAbs and gold conjugated-protein A. After performing the immune reaction, the samples were adsorbed to formvar-coated grids, stained with phosphotungstic acid and observed in a transmission electron microscope. Gold particles were mainly attached to the virion envelope.  相似文献   

10.
The available methods for double-labeling preembedding immunoelectron microscopy are highly limited because not only should the ultrastructure be preserved, but also the different antigens should be visualized by reaction end products that can be clearly distinguished in gray-scale images. In these procedures, one antigen is detected with 3,3′-diaminobenzidine (DAB) chromogen, resulting in a homogeneous deposit, whereas the other is labeled with either a gold-tagged immunoreagent, or DAB polymer, on the surface of which metallic silver is precipitated. The detection of the second antigen is usually impeded by the first, leading to false-negative results. The authors aimed to diminish this hindrance by a new silver intensification technique of DAB polymer, which converts the deposit from amorphous to granular. The method includes three major postdevelopmental steps: (1) treatment of nickel-enhanced DAB with sulfide, (2) silver deposition in the presence of hydroquinone under acidic conditions, and (3) precious metal replacement with gold thiocyanate. This new sulfide-silver-gold intensification of DAB (SSGI) allows a subsequent detection of other antigens using DAB. In conclusion, the new technique loads fine gold particles onto the DAB deposit at a very low background level, thereby allowing a reliable discernment between the elements stained for the two antigens at the ultrastructural level.  相似文献   

11.
Summary A method is presented which allows correlative serial section analysis by light and electron microscopy of cell surface antigens in monolayer cultures. Sites of antigenicity are shown by deposition of diaminobenzidine after pre-embedding, immunoperoxidase immunocytochemistry. Osmication is replaced by the use of gold chloride which specifically enhances the electron density of diaminobenzidine. In addition gold chloride bound to diaminobenzidine survives embedding and provides the basis for a post-embedding photochemical amplification method. Immunostained cells are embedded in LR White by a rapid technique which preserves their structure and leaves them available for subsequent post-embedding immunocytochemistry. The method is illustrated by the demonstration of epidermal growth factor (EGF) receptors on the EGF receptor-rich human carcinoma cell line A431 using a well characterized monoclonal antibody raised against EGF receptor.  相似文献   

12.
Two different antigens of serotype 1 Chlamydia psittaci were localized using three immunoelectron microscopy techniques: non-embedding, pre-embedding and post-embedding. The antigens had previously been described as being of potential use in diagnosis (80–90 kDa protein region) and vaccine development (110 kDa protein). The results show a direct relationship between the protective capacity of the antigens and their surface localization on the elementary bodies, which are the infectious form of Chlamydia. The 80–90 kDa protein region is located on the surface of reticulate bodies but not of elementary bodies, where it was located periplasmically, while the 110 kDa protein occurs on the surface of both elementary and reticulate bodies.  相似文献   

13.
Fibronectin (FN)-like protein has been localized by immunoelectron microscopy in the extracellular matrix (ECM) of planaria Dugesia lugubris s.l. The immunolabeling was present in both intercellular spaces of epidermal cells and the basement membrane, however the amount and distribution of gold particles seemed to be substantially different. FN-like material increased markedly during the passage of migrating cells through the basement membrane from the parenchyma to the epidermis. Gold particles were often found at cell-matrix contacts. Our result suggest that FN-like molecules detected in planarian ECM may be involved not only in cell adhesion but also in promoting cell migration and in regulating the epidermal cell turnover.  相似文献   

14.
By indirect immunoelectron microscopy we tested for the presence of H-2 antigens on murine mammary tumor virus (MMTV) and murine leukemia virus (MuLV) particles. The association of H-2 antigens and viral antigens on the virus-infected cell surface was investigated with antibody-induced redistribution. Mammary tumor cells and leukemia cell lines with different H-2 genotypes and carrying different MuMTV or MuLV were used. No H-2 antigens could be demonstrated on the envelope of MMTV and MuLV particles, even after the permeabilization of their envelopes with saponin. On the surface of virus-infected cells antibody-induced patching or capping of the viral antigens did not result in copatching or cocapping of the H-2 antigens. In the reciprocal tests no co-redistribution of viral antigens with H-2 antigens was seen. Our experiments failed to show any physical association between H-2 antigens and MMTV or MuLV antigens on the cell surface.Abbreviations used in this paper MMTV mammary tumor virus - MuLV murine leukemia virus - MHC major histocompatibility complex - IEM immunelectron microscopy  相似文献   

15.
Cytotoxic T lymphocytes (CTL) play a vital role in host defense against viral and intracellular bacterial infections. However, nonreplicating vaccines administered by intramuscular injection using a syringe and needle elicit predominantly humoral responses and not CTL responses. Here we report that epidermal powder immunization (EPI), a technology that delivers antigens on 1.5- to 2.5-microm gold particles to the epidermis using a needle-free powder delivery system, elicits CTL responses to nonreplicating antigens. Following EPI, a majority of the antigen-coated gold particles were found in the viable epidermis in the histological sections of the target skin. Further studies using transmission electron microscopy revealed the intracellular localization of the gold particles. Many Langerhans cells (LCs) at the vaccination site contained antigen-coated particles, as revealed by two-color immunofluorescence microscopy, and these cells were found in the draining lymph nodes 20 h later. Immune responses to several viral protein antigens after EPI were studied in mice. EPI with hepatitis B surface antigen (HBsAg) and a synthetic peptide of influenza virus nucleoprotein (NP peptide) elicited antigen-specific CTL responses as well as antibody responses. In an in vitro cell depletion experiment, we demonstrated that the CTL activity against HBsAg elicited by EPI was attributed to CD8(+), not CD4(+), T cells. As controls, needle injections of HBsAg or the NP peptide into deeper tissues elicited solely antibody, not CTL, responses. We further demonstrated that EPI with inactivated A/Aichi/68 (H3N2) or A/Sydney/97 (H3N2) influenza virus elicited complete protection against a mouse-adapted A/Aichi/68 virus. In summary, EPI directly delivers protein antigens to the cytosol of the LCs in the skin and elicits both cellular and antibody responses.  相似文献   

16.
A highly sensitive method of ultrastructural-immunoperoxidase staining was developed for use with monoclonal antibodies which have been raised in this laboratory to a variety of antigens of the human kidney. Because of the susceptibility of the antigens to fixation and processing, a four layer, pre-embedding method of staining was used. Results confirmed and clarified previously reported light microscopy results, indicating that an antigen recognized by the PHM5 antibody was found on the podocyte cell membrane within the glomerulus and was not present within the glomerular basement membrane. The antigen was also present on the extraglomerular endothelial cell membrane. The study also demonstrated the presence of an antigen specific to endothelial cells throughout the renal cortex, and gave further insight into the precise localization of glomerular basement membrane components including fibronectin. The method of staining is now being used together with detailed ultrastructural studies to identify the cells produced from isolated glomeruli in tissue culture.  相似文献   

17.
M241 (CD1) expression on B lymphocytes   总被引:3,自引:0,他引:3  
The human thymus leukemia-like antigens (CD1a-c) consist of three similar glycoproteins found on subpopulations of normal thymocytes, T cell acute leukemias, and cutaneous dendritic cells. The CD1c antigen recognized by the M241 monoclonal antibody was detected on the circulating mononuclear cells of three children with severe combined immunodeficiency disease (SCID). Two-color immunofluorescence analysis demonstrated that M241 expression (43 to 95%) was limited to cells expressing the B cell-restricted antigens B4 (CD19), B1 (CD20), and surface immunoglobulin. To confirm M241 expression on normal cells of the B lineage rather than aberrant expression limited to SCID B cells, its expression was demonstrated serologically and biochemically on purified B cells from spleen, tonsil, and peripheral blood. Parallel analyses with monoclonal antibodies NA1/34 and 4A76 demonstrated that the CD1a and CD1b molecules were negative on all B cells that were studied. It has been hypothesized that the CD1 molecules represent the human counterpart of the murine thymus leukemia antigens due to their similar size, limited tissue distribution, and association with beta 2-microglobulin. This study suggests that a subset of CD1 antigens detected by M241 (CD1c) may represent a human analog of a murine Qa antigen due to its extended distribution on normal peripheral B cells.  相似文献   

18.
Peroxidase-labeled Fab' fragments of rabbit antisera against gp52 (major envelope protein) and A-particles of mammary tumor virus (MTV) were prepared and used for investigation by immunoelectron microscopy of the replication cycle of MTV-specific envelope and core antigens in normal and malignant mammary gland cells of female mice. The specificity of the antisera was proven by absorption tests and lack of reactivity to MTV-free mammary tissues. Periodate-lysine-paraformaldehyde (PLP) fixation sufficiently preserved the antigenicity of gp52, while Zamboni's fixative was useful to preserve the core antigen. Saponin pretreatment was necessary to reveal the intracellular antigen of A particles but had no influence on gp52. In addition to its presence at the envelope of D particles, gp52 was clearly associated with the biomembrane system, including the nuclear membrane, endoplasmic reticulum, Golgi apparatus and plasma membrane independent of the presence of virus particles. In mammary tumors, a significant level of gp52 antigen was often expressed on the entire cell surface membrane. In contrast, it was localized only to the apical plasma membrane in normal mammary gland cells. A particle antigens were confined to the intracytoplasmic A particles, usually visible as clusters, and to the inner part of B particles. These ultrastructural findings support the available biochemical data on the morphogenesis of MTV particles.  相似文献   

19.
The localization of scarce antigens in thin sections of biological material can be accomplished by pre-embedment labeling with ultrasmall immuno-gold labels. Moreover, with this method, labeling is not restricted to the section surface but occurs throughout the section volume. Thus, when combined with electron tomography, antigens can be localized in three dimensions in relation to the 3D (three-dimensional) ultrastructure of the cell. However, for visualization in a transmission electron microscope, these labels need to be enlarged by silver or gold enhancement. The increase in particle size reduces the resolution of the antigen detection and the large particles obscure ultrastructural details in the tomogram. In this paper we show for the first time that these problems can be avoided and that ultrasmall gold labels can be localized in three dimensions without the need for gold or silver enhancement by using HAADF-STEM (high angular annular dark-field-scanning transmission electron microscopy) tomography. This method allowed us to three-dimensionally localize Aurion ultrasmall goat anti-rabbit immuno-gold labels on sections of Epon-embedded, osmium-uranium-lead-stained biological material. Calculations show that a 3D reconstruction obtained from HAADF-STEM projection images can be spatially aligned to one obtained from transmission electron microscopy (TEM) projections with subpixel accuracy. We conclude that it is possible to combine the high-fidelity structural information of TEM tomograms with the ultrasmall label localization ability of HAADF-STEM tomograms.  相似文献   

20.
Ultrastructural localization of four immunodominant antigens of Toxoplasma gondii was investigated quantitatively on thin sections and replicas by an immunogold technique using four monoclonal antibodies (Mab). On immunoblot Mab IV47, GII9, II38 and IE10 identified proteins of 28, 30, 45 and 66-70 kDa, respectively. Use of digital image analyzer and a semi-automatic procedure developed by us, the patterns of label distribution were compared in three cell structures: cell surface, submembrane area and rhoptries. On the whole cell surface, protein P28 and P30 were 2.5 and 4 times more abundant than P66-70 respectively. The protein P28 was essentially concentrated in the submembrane area with a labeling of 195.4 +/- 46.7 gold particles/microns 2 that follows a decreasing gradient from this area to the cell centre. In the rhoptries, all four antigens were detected, P45 and P66-70 being major with a labeling of 97.1 +/- 31.1 gold particles/microns 2 and 155.1 +/- 39.3 gold particles/microns 2 respectively. The results support the hypothesis that rhoptries are the essential site for antigen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号