首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BUBR1, a key component of the mitotic spindle checkpoint, is a multidomain protein kinase that is activated in response to kinetochore tension. Although BUB1 and BUBR1 play an important role in cell division, very little is known about their structural characteristics. We show that the conserved N-terminal region of BUBR1, comprising residues 1-204, is a globular domain of high alpha-helical content ( approximately 60%), stable in the pH range 4-9 and probably organized as a tetratricopeptide motif repeat (TPR), most closely resembling residues 16-181 of protein phosphatase 5. Because the latter presents a continuous amphipathic groove and is regulated by binding certain fatty acids, we compared the properties of BUBR1(1-204) and TPR-PP5(16-181) at air/water interfaces and found that both proteins exhibited a similar surface activity and formed stable, rigid monolayers. The deletion of a region that probably comprises several alpha-helices of BUBR1 indicates that long-range interactions are essential for the stability of the N-terminal domain. The presence of the putative TPR motif strongly suggests that the N-terminal domain of BUBR1 is involved in direct protein-protein interactions and/or protein-lipid interactions.  相似文献   

2.
Poliovirus protein 2C contains a predicted N-terminal amphipathic helix that mediates association of the protein with the membranes of the viral RNA replication complex. A chimeric virus that contains sequences encoding the 18-residue core from the orthologous amphipathic helix from human rhinovirus type 14 (HRV14) was constructed. The chimeric virus exhibited defects in viral RNA replication and produced minute plaques on HeLa cell monolayers. Large plaque variants that contained mutations within the 2C-encoding region were generated upon subsequent passage. However, the majority of viruses that emerged with improved growth properties contained no changes in the region encoding 2C. Sequence analysis and reconstruction of genomes with individual mutations revealed changes in 3A or 2B sequences that compensated for the HRV14 amphipathic helix in the polio 2C-containing proteins, implying functional interactions among these proteins during the replication process. Direct binding between these viral proteins was confirmed by mammalian cell two-hybrid analysis.  相似文献   

3.
The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. In this report we have studied the functions of conserved residues within the structurally related TatA and TatB proteins. Our results demonstrate that there are two regions within each protein of high sequence conservation that are critical for efficient Tat translocase function. The first region is the interdomain hinge between the transmembrane and the amphipathic alpha-helices of TatA and TatB proteins. The second region is within the amphipathic helices of TatA and TatB. In particular an invariant phenylalanine residue within TatA proteins is essential for activity, whereas a string of glutamic acid residues on the same face of the amphipathic helix of TatB is important for function.  相似文献   

4.
Several types of lipid-associating helices exist: transmembrane helices such as in receptor proteins, pore-forming helices in ion channel proteins, fusion-inducing peptides in viral proteins, and amphipathic helices such as in plasma apolipoproteins. In order to propose a classification of these helices according to their molecular properties, we introduce the concept of molecular hydrophobicity potential for such helical segments. The calculation of this parameter for alpha-helices enables the visualization of the hydrophobic and hydrophilic envelopes around the peptide and their three-dimensional representation by molecular graphics. We have used this parameter to differentiate between pore-forming helices with a hydrophobic envelope larger than the hydrophilic component, membrane-spanning helices surrounded almost entirely by an hydrophobic envelope, fusiogenic peptides with an hydrophobicity gradient both around the helix and along the axis, and finally, amphipathic helices with a predominantly hydrophilic envelope. The structure of the lipid-protein complexes is determined by a number of different interactions: the hydrophobic interaction of the apolar faces of the helices with lipids, the polar interaction of the hydrophilic sides of different helices with each other, and the interaction of hydrophilic residues with the aqueous solvent. The relative magnitude of the hydrophobic and hydrophilic envelopes accounts for the differences in the structure of the lipid-protein complexes. Purely hydrophobic interactions stabilize transmembrane helical segments, while hydrophobic interactions with the lipid phase and with each other are involved in the stabilization of the pore-forming helices. In contrast, both hydrophobic interactions with the lipids and hydrophilic interactions with the aqueous phase contribute to the arrangement of amphipathic helices around the edges of the discoidal lipid-apoprotein complexes.  相似文献   

5.
Nonstructural protein 5A (NS5A) is a membrane-associated essential component of the hepatitis C virus (HCV) replication complex. An N-terminal amphipathic alpha helix mediates in-plane membrane association of HCV NS5A and at the same time is likely involved in specific protein-protein interactions required for the assembly of a functional replication complex. The aim of this study was to identify the determinants for membrane association of NS5A from the related GB viruses and pestiviruses. Although primary amino acid sequences differed considerably, putative membrane anchor domains with amphipathic features were predicted in the N-terminal domains of NS5A proteins from these viruses. Confocal laser scanning microscopy, as well as membrane flotation analyses, demonstrated that NS5As from GB virus B (GBV-B), GBV-C, and bovine viral diarrhea virus, the prototype pestivirus, display membrane association characteristics very similar to those of HCV NS5A. The N-terminal 27 to 33 amino acid residues of these NS5A proteins were sufficient for membrane association. Circular dichroism analyses confirmed the capacity of these segments to fold into alpha helices upon association with lipid-like molecules. Despite structural conservation, only very limited exchanges with sequences from related viruses were tolerated in the context of functional HCV RNA replication, suggesting virus-specific interactions of these segments. In conclusion, membrane association of NS5A by an N-terminal amphipathic alpha helix is a feature shared by HCV and related members of the family Flaviviridae. This observation points to conserved roles of the N-terminal amphipathic alpha helices of NS5A in replication complex formation.  相似文献   

6.
In recent in vitro experiments, it has been demonstrated that the 47-kDa fragment of the talin molecule and the 32-kDa fragment of the vinculin molecule interact with acidic phospholipids. By using a computer analysis method, we determined the hydrophobic and amphipathic stretches of these fragments and, by applying a purpose-written matrix method, we ascertained the molecular amphipathic structure of alpha-helices. Calculations for the 47-kDa mouse talin fragment (residues 1-433; NH2-terminal region) suggest specific interactions of residues 21-39, 287-342, and 385-406 with acidic phospholipids and a general lipid-binding domain for mouse talin (primary amino acid sequence 385-401) and for Dictyostelium talin (primary amino acid sequence 348-364). Calculations for the 32-kDa chicken embryo vinculin fragment (residues 858-1066; COOH-terminal region) and from nematode vinculin alignment indicate for chicken embryo vinculin residues 935-978 and 1020-1040 interactions with acidic phospholipids. Experimental confirmation has been given for vinculin (residues 916-970), and future detailed experimental analyses are now needed to support the remaining computational data.  相似文献   

7.
In many Gram-negative bacteria, a key indicator of pathogenic potential is the possession of a specialized type III secretion system, which is utilized to deliver virulence effector proteins directly into the host cell cytosol. Many of the proteins secreted from such systems require small cytosolic chaperones to maintain the secreted substrates in a secretion-competent state. One such protein, CesT, serves a chaperone function for the enteropathogenic Escherichia coli (EPEC) translocated intimin receptor (Tir) protein, which confers upon EPEC the ability to alter host cell morphology following intimate bacterial attachment. Using a combination of complementary biochemical approaches, functional domains of CesT that mediate intermolecular interactions, involved in both chaperone-chaperone and chaperone-substrate associations, were determined. The CesT N-terminal is implicated in chaperone dimerization, whereas the amphipathic alpha-helical region of the C-terminal, is intimately involved in substrate binding. By functional complementation of chaperone domains using the Salmonella SicA chaperone to generate chaperone chimeras, we show that CesT-Tir interaction proceeds by a mechanism potentially common to other type III secretion system chaperones.  相似文献   

8.
Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase (IN) in human cells. We have determined the NMR structure of the integrase-binding domain (IBD) in LEDGF and identified amino acid residues essential for the interaction. The IBD is a compact right-handed bundle composed of five alpha-helices. Based on folding topology, the IBD is structurally related to a diverse family of alpha-helical proteins that includes eukaryotic translation initiation factor eIF4G and karyopherin-beta. LEDGF residues essential for the interaction with IN were localized to interhelical loop regions of the bundle structure. Interaction-defective IN mutants were previously shown to cripple replication although they retained catalytic function. The initial structure determination of a host cell factor that tightly binds to a retroviral enzyme lays the groundwork for understanding enzyme-host interactions important for viral replication.  相似文献   

9.
Protein segments that form amphipathic alpha-helices in their native state have periodic variation in the hydrophobicity values of the residues along the segment, with a 3.6 residue per cycle period characteristic of the alpha-helix. The assignment of hydrophobicity values to amino acids (hydrophobicity scale) affects the display of periodicity. Thirty-eight published hydrophobicity scales are compared for their ability to identify the characteristic period of alpha-helices, and an optimum scale for this purpose is computed using a new eigenvector method. Two of the published scales are also characterized by eigenvectors. We compare the usual method for detecting periodicity based on the discrete Fourier transform with a method based on a least-squares fit of a harmonic sequence to a sequence of hydrophobicity values. The two become equivalent for very long sequences, but, for shorter sequences with lengths commonly found in alpha-helices, the least-squares procedure gives a more reliable estimate of the period. The analog to the usual Fourier transform power spectrum is the "least-squares power spectrum", the sum of squares accounted for in fitting a sinusoid of given frequency to a sequence of hydrophobicity values. The sum of the spectra of the alpha-helices in our data base peaks at 97.5 degrees, and approximately 50% of the helices can account for this peak. Thus, approximately 50% of the alpha-helices appear to be amphipathic, and, of those that are, the dominant frequency at 97.5 degrees rather than 100 degrees indicates that the helix is slightly more open than previously thought, with the number of residues per turn closer to 3.7 than 3.6. The extra openness is examined in crystallographic data, and is shown to be associated with the C terminus of the helix. The alpha amphipathic index, the key quantity in our analysis, measures the fraction of the total spectral area that is under the 97.5 degrees peak, and is a characteristic of hydrophobicity scales that is consistent for different sets of helices. Our optimized scale maximizes the amphipathic index and has a correlation of 0.85 or higher with nine previously published scales. The most surprising feature of the optimized scale is that arginine tends to behave as if it were hydrophobic; i.e. in the crystallographic data base it has a tendency to be on the hydrophobic face of teh amphipathic helix. Although the scale is optimal only for predicting alpha-amphipathicity, it also ranks high in identifying beta-amphipathicity and in distinguishing interior from exterior residues in a protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.  相似文献   

11.
S Oiki  V Madison  M Montal 《Proteins》1990,8(3):226-236
Channel proteins are transmembrane symmetric (or pseudosymmetric) oligomers organized around a central ionic pore. We present here a molecular model of the pore forming structures of two channel proteins with different primary structures and oligomeric size: the voltage-sensitive sodium channel and the nicotinic cholinergic receptor. We report low-energy arrangements of alpha-helical bundles calculated by semiempiricial potential energy functions and optimization routines and further refined using molecular dynamics. The ion-conducting pore is considered to be a symmetric or pseudosymmetric homooligomer of 3-5 amphipathic alpha-helices arranged such that the polar residues line a central hydrophilic pathway and the apolar residues face the hydrophobic bilayer interior. The channel lining exposes either charged (Asp, Glu, Arg, Lys) or polar-neutral (Ser, Thr) residues. A bundle of four parallel helices constrained to C4 symmetry, the helix axis aligned with the symmetry axis, and the helices constrained to idealized dihedral angles, produces a structure with a pore of the size inferred for the sodium channel protein (area approximately 16 A2). Similarly, a pentameric array optimized with constraints to maintain C5 symmetry and backbone torsions characteristic of alpha-helices adopts a structure that appears well suited to form the lining of the nicotinic cholinergic receptor (pore area approximately 46 A2). Thus, bundles of amphipathic alpha-helices satisfy the structural, energetic, and dynamic requirements to be the molecular structural motif underlying the function of ionic channels.  相似文献   

12.
Local determinants of 3(10)-helix stabilization have been ascertained from the analysis of the crystal structure data base. We have clustered all 5-length substructures from 51 nonhomologous proteins into classes based on the conformational similarity of their backbone dihedral angles. Several clusters, derived from 3(10)-helices and multiple-turn conformations, had strong amino acid sequence patterns not evident among alpha-helices. Aspartate occurred over twice as frequently in the N-cap position of 3(10)-helices as in the N-cap position of alpha-helices. Unlike alpha-helices, 3(10)-helices had few C-termini ending in a left-handed alpha conformation; most 3(10) C-caps adopted an extended conformation. Differences in the distribution of hydrophobic residues among 3(10)- and alpha-helices were also apparent, producing amphipathic 3(10)-helices. Local interactions that stabilize 3(10)-helices can be inferred both from the strong amino acid preferences found for these short helices, as well as from the existence of substructures in which tertiary interactions replace consensus local interactions. Because the folding and unfolding of alpha-helices have been postulated to proceed through reverse-turn and 3(10)-helix intermediates, sequence differences between 3(10)- and alpha-helices can also lend insight into factors influencing alpha-helix initiation and propagation.  相似文献   

13.
The nucleocapsid protein is one of four structural proteins encoded by SARS-CoV-2 and plays a central role in packaging viral RNA and manipulating the host cell machinery, yet its dynamic behavior and promiscuity in nucleotide binding has made standard structural methods to address its atomic-resolution details difficult. To begin addressing the SARS-CoV-2 nucleocapsid protein interactions with both RNA and the host cell along with its dynamic behavior, we have specifically focused on the folded N-terminal domain (NTD) and its flanking regions using nuclear magnetic resonance solution studies. Studies performed here reveal a large repertoire of interactions, which includes a temperature-dependent self-association mediated by the disordered flanking regions that also serve as binding sites for host cell cyclophilin-A while nucleotide binding is largely mediated by the central NTD core. NMR studies that include relaxation experiments have revealed the complicated dynamic nature of this viral protein. Specifically, while much of the N-terminal core domain exhibits micro-millisecond motions, a central β-hairpin shows elevated inherent flexibility on the pico-nanosecond timescale and the serine/arginine-rich region of residues 176–209 undergoes multiple exchange phenomena. Collectively, these studies have begun to reveal the complexities of the nucleocapsid protein dynamics and its preferred interaction sites with its biological targets.  相似文献   

14.
Mutagenesis was carried out in the N-terminal domain of elongation factor Tu (EF-Tu) to characterize the structure-function relationships of this model GTP binding protein with respect to stability, the interaction with GTP and GDP, and the catalytic activity. The substitutions were introduced in elements around the guanine nucleotide binding site or in the loops defining this site, in the intact molecule or in the isolated N-terminal domain (G domain). The double substitution Val88----Asp and Leu121----Lys, two residues situated on two vicinal alpha-helices, influences the basic activities of the truncated factor to a limited extent, probably via long-range interactions, and induces a destabilisation of the G domain structure. The functional alterations brought about by substitutions on the consensus sequences 18-24 and 80-83 highlight the importance of these residues for the interaction with GTP/GDP and the GTPase activity. Mutations concerning residues interacting with the guanine base lead to proteins in large part insoluble and inactive. In one case, the mutated protein (EF-TuAsn135----Asp) inhibited the growth of the host cell. This demonstrates the crucial role of the base specificity for the active conformation of EF-Tu. The obtained results are discussed in the light of the three-dimensional structure of EF-Tu.  相似文献   

15.
H Vogel  J K Wright    F Jhnig 《The EMBO journal》1985,4(13A):3625-3631
The secondary structure of the lactose permease of Escherichia coli reconstituted in lipid membranes was determined by Raman spectroscopy. The alpha-helix content is approximately 70%, the beta-strand content below 10% and beta-turns contribute 15%. About 1/3 of the residues in alpha-helices and most other residues are exposed to water. Employing a method for structural prediction which accounts for amphipathic helices, 10 membrane-spanning helices are predicted which are either hydrophobic or amphipathic. They are expected to form an outer ring of helices in the membrane. The interior of the ring would be made of residues which are predominantly hydrophilic and, evoking the analogy to sugar-binding proteins, suited to provide the sugar binding site.  相似文献   

16.
The effects of 2 molal Na2SO4 at neutral pH on hydrophobic and electrostatic interactions between amphipathic alpha-helices were investigated by circular dichroism spectroscopy. The amphipathic peptides that were studied included LEK (acetyl-LEELKKKLEELKKKLEEL-NH2) and LEE (acetyl-LEELEEELEELEEELEEL-NH2). In phosphate buffer at neutral pH, only LEK adopted a predominantly alpha-helical conformation, attributable to glu-lys+ interactions where a major contribution is evidently a hydrogen bond (Biochemistry 32: 9668-9676). Despite the presence of lys+ in the e and g' positions of the abcdefg heptad repeat, LEK exhibited mean-residue ellipticities at 222 nm ([theta]222) which were dependent on peptide concentration, indicating the presence of a coiled coil. In the presence of 2 molal Na2SO4 at 25-75 degrees C, the helical content of LEK increased, with the greatest increase observed at 75 degrees C. The value of the ellipticity ratio R ([theta]222/[theta]208) of LEK in 2 molal Na2SO4 also increased, indicating a stronger interhelical association. At 50 degrees C and 75 degrees C, LEK remained predominantly alpha-helical. In phosphate buffer at neutral pH, LEE was mainly random coil. In the presence of 2 molal Na2SO4, however, the peptide formed alpha-helices that associated to form a coiled coil. At 50 degrees C and 75 degrees C, LEE became predominantly random coil but the remaining alpha-helices were still associating. These results are consistent with the strengthening of interhelical hydrophobic interactions and the absence of screening of helix-stabilizing and helix-destabilizing electrostatic interactions in amphipathic alpha-helices by Na2SO4.  相似文献   

17.
Herpesviral capsids are assembled in the host cell nucleus and are subsequently translocated to the cytoplasm. During this process it has been demonstrated that the human cytomegalovirus proteins pUL50 and pUL53 interact and form, together with other viral and cellular proteins, the nuclear egress complex at the nuclear envelope. In this study we provide evidence that specific residues of a conserved N-terminal region of pUL50 determine its intranuclear interaction with pUL53. In silico evaluation and biophysical analyses suggested that the conserved region forms a regular secondary structure adopting a globular fold. Importantly, site-directed replacement of individual amino acids by alanine indicated a strong functional influence of specific residues inside this globular domain. In particular, mutation of the widely conserved residues Glu-56 or Tyr-57 led to a loss of interaction with pUL53. Consistent with the loss of binding properties, mutants E56A and Y57A showed a defective function in the recruitment of pUL53 to the nuclear envelope in expression plasmid-transfected and human cytomegalovirus-infected cells. In addition, in silico analysis suggested that residues 3-20 form an amphipathic α-helix that appears to be conserved among Herpesviridae. Point mutants revealed a structural role of this N-terminal α-helix for pUL50 stability rather than a direct role in the binding of pUL53. In contrast, the central part of the globular domain including Glu-56 and Tyr-57 is directly responsible for the functional interaction with pUL53 and thus determines formation of the basic nuclear egress complex.  相似文献   

18.
Feng L  Chan WW  Roderick SL  Cohen DE 《Biochemistry》2000,39(50):15399-15409
Phosphatidylcholine transfer protein (PC-TP) is a 214-amino acid cytosolic protein that promotes intermembrane transfer of phosphatidylcholines, but no other phospholipid class. To probe mechanisms for membrane interactions and phosphatidylcholine binding, we expressed recombinant human PC-TP in Escherichia coli using a synthetic gene. Optimization of codon usage for bacterial protein translation increased expression of PC-TP from trace levels to >10% of the E. coli cytosolic protein mass. On the basis of secondary structure predictions of an amphipathic alpha-helix (residues 198-212) in proximity to a hydrophobic alpha-helix (residues 184-193), we explored whether the C-terminus might interact with membranes and promote binding of phosphatidylcholines. Consistent with this possibility, truncation of five residues from the C-terminus shortened the predicted amphipathic alpha-helix and decreased PC-TP activity by 50%, whereas removal of 10 residues eliminated the alpha-helix, abolished activity, and markedly decreased the level of membrane binding. Circular dichroic spectra of synthetic peptides containing one ((196-214)PC-TP) or both ((183-214)PC-TP) predicted C-terminal alpha-helices in aqueous buffer were most consistent with random coil structures. However, both peptides adopted alpha-helical configurations in the presence of trifluoroethanol or phosphatidylcholine/phosphatidylserine small unilamellar vesicles. The helical content of (196-214)PC-TP increased in proportion to vesicle phosphatidylserine content, consistent with stabilization of the alpha-helix at the membrane surface. In contrast, the helical content of (183-214)PC-TP was not influenced by vesicle composition, implying that the more hydrophobic of the alpha-helices penetrated into the membrane bilayer. These studies suggest that tandem alpha-helices located near the C-terminus of PC-TP facilitate membrane binding and extraction of phosphatidylcholines.  相似文献   

19.
The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein.  相似文献   

20.
We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号