首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water radiolysis products and nucleotide damage in gamma-irradiated DNA   总被引:2,自引:0,他引:2  
The radiation chemistry of nucleotide damage introduction into DNA gamma-irradiated in dilute aqueous solution has been studied with a damage-specific DNA binding protein. Irradiation in air, N2 or N2O in the presence and absence of free radical scavengers revealed that protein-recognizable lesions were introduced both by the hydrated electron and by the combination of the hydroxyl radical and superoxide anion radical, but not by the hydroxyl radical alone. In addition, nucleotide damage was introduced into DNA by an enzymatic superoxide-generating system.  相似文献   

2.
The oxygen effect in radiation inactivation of DNA and enzymes   总被引:1,自引:0,他引:1  
A survey is made of literature data dealing with the influence of oxygen on radiation effects in biologically active DNA and enzymes irradiated extracellularly. There is evidence that oxygen takes part in physico-chemical events, directly or indirectly produced by radiation in several ways: from scavenging reducing primary water radicals to reacting directly with macromolecular radical sites. There is evidence that radiation-induced secondary radicals, originating from a variety of low molecular weight biomolecules, can react with DNA and enzymes in their native state, and produce inactivation. By reaction with oxygen secondary radicals become peroxidized and in this form are generally more harmful to biological macromolecules. There are indications that thiol peroxy radicals can also act in the same way. Possible implications for the oxygen effect observed in vivo are discussed.  相似文献   

3.
Naturally occurring compounds capable of protecting DNA against ionizing radiation and chemical mutagens have considerable potential for prevention of mutation-based health impairment including cancer and other degenerative diseases. Chlorophyllin (CHL), a water-soluble derivative of chlorophyll, has been examined for its ability to protect DNA against radiation induced strand breaks using an in vitro plasmid DNA system. Gamma-radiation, up to a dose of 6 Gy (dose rate 1.25 Gy/min), induced a dose-dependent increase in single-strand breaks (ssbs) in plasmid pBR322 DNA. CHL per se did not induce, but inhibited radiation-induced ssbs in a concentration-dependent manner; 500 microM giving about 90% protection. The protection afforded by CHL was comparatively less than that of trolox, a water-soluble analogue of alpha-tocopherol. To elucidate the underlying mechanism(s), reaction of CHL with the radiation-derived hydroxyl radical (.OH) and deoxyribose peroxyl radical (ROO.) was studied by pulse radiolysis. CHL exhibited a rate constant of 6.1+/-0.4x109 M-1 s-1 with.OH and 5.0+/-1.3x107 M-1 s-1 with ROO. To our knowledge, this is the first report providing direct evidence of free radical-scavenging properties of CHL. The results showed that CHL, effectively protects plasmid DNA against ionizing radiation, in an in vitro system independent of DNA repair or other cellular defense mechanisms. The ability of CHL to scavenge. OH and ROO., may contribute to its protective effects against radiation induced DNA damage in the pBR322 system.  相似文献   

4.
Free radical mechanisms in neocarzinostatin-induced DNA damage   总被引:7,自引:0,他引:7  
The molecular mechanisms by which the antitumor protein antibiotic, neocarzinostatin, interacts with DNA and causes DNA sugar damage is discussed. Physical binding of the nonprotein chromophore of neocarzinostatin to DNA, involving an intercalative process and dependent on the microheterogeneity of DNA structure, is followed by thiol activation of the drug to a probable radical species. The latter attacks the deoxyribose, especially at thymidylate residues, by abstracting a hydrogen atom from C-5' to generate a carbon-centered radical on the DNA. This nascent form of DNA damage either reacts with dioxygen to form a peroxyl radical derivative, which eventuates in a strand break with a nucleoside 5'-aldehyde at the 5'-end or reacts with the bound drug to form a novel drug-deoxyribose covalent adduct. Nitroaromatic radiation sensitizers can substitute for dioxygen, but the DNA damage products are different. Similarities between the various biological effects of neocarzinostatin and ionizing radiation are reviewed.  相似文献   

5.
The resistance of Deinococcus radiodurans (Dr) to extreme doses of ionizing radiation depends on its highly efficient capacity to repair dsDNA breaks. Dr RecA, the key protein in the repair of dsDNA breaks by homologous recombination, promotes DNA strand-exchange by an unprecedented inverse pathway, in which the presynaptic filament is formed on dsDNA instead of ssDNA. In order to gain insight into the remarkable repair capacity of Dr and the novel mechanistic features of its RecA protein, we have determined its X-ray crystal structure in complex with ATPgammaS at 2.5A resolution. Like RecA from Escherichia coli, Dr RecA crystallizes as a helical filament that is closely related to its biologically relevant form, but with a more compressed pitch of 67 A. Although the overall fold of Dr RecA is similar to E.coli RecA, there is a large reorientation of the C-terminal domain, which in E.coli RecA has a site for binding dsDNA. Compared to E.coli RecA, the inner surface along the central axis of the Dr RecA filament has an increased positive electrostatic potential. Unique amino acid residues in Dr RecA cluster around a flexible beta-hairpin that has also been implicated in DNA binding.  相似文献   

6.
The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.  相似文献   

7.
The complexing of histones with DNA and the resulting condensation of chromatin protects mammalian cell, from radiation-induced strand breakage. In the present study, benzimidazoles DMA and TBZ showed marked radioprotection through drug-induced compaction of chromatin and direct quenching of free radicals generated by radiation. The mammalian cells were incubated with 100 μM concentration of DMA and TBZ and irradiated at 5 Gy; both the ligands showed nuclei condensation suggesting a probable mechanism to protect DNA from radiation damage. The bisubstituted analogs of Hoechst 33342 are found to be better free radical scavengers and protect DNA against radiation-induced damage at a lower concentration than the parent molecule. Both the ligands also quenched free radicals in isolated free radical system suggesting their dual mode of action against radiation-induced damage to DNA. Molecules binding to the chromatin alter gene expression, whereas in this study both the ligands have not shown any profound effect on the nucleosome assembly and gene expression in vitro and in vivo. Both ligands afford a 2-fold protection by altering DNA structure as well as through direct free radical quenching in bulk solution in comparison to the parent ligand, which acts only through quenching of free radicals. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Reactive species generated by chemicals and UV radiation can cause sequence-specific DNA damage and play important roles in mutagenesis, carcinogenesis and aging. We have investigated sequence specificity of oxidative stress-mediated DNA damage by using 32P-labeled DNA fragments obtained from the human c-Ha-ras-1 and p53 genes. Free hydroxyl radical causes DNA damage with no marked site specificity. Reactive nitrogen species, sulfate radicals, nitrogen-centered radicals, benzoyloxyl radical and alkoxyl radical show different sequence specificity. Benzoyloxyl radical specifically causes damage to the 5'-G in GG sequence. UVA radiation also causes DNA damage at this site through electron transfer in the presence of certain photosensitizers. The 5'-G in GG sequence is easily oxidized because a large part of the highest occupied molecular orbital is distributed on this site. On the basis of these findings, the sequence specificity of DNA damage is presumably determined by (a) redox potential of reactive species; (b) ionization potential of DNA bases; and (c) site-specific binding of metal ion to DNA. Here we discuss the mechanisms of sequence-specific DNA damage in relation to carcinogenesis and aging.  相似文献   

9.
The RecA protein of Deinococcus radiodurans (RecA(Dr)) is essential for the extreme radiation resistance of this organism. The RecA(Dr) protein has been cloned and expressed in Escherichia coli and purified from this host. In some respects, the RecA(Dr) protein and the E. coli RecA (RecA(Ec)) proteins are close functional homologues. RecA(Dr) forms filaments on single-stranded DNA (ssDNA) that are similar to those formed by the RecA(Ec). The RecA(Dr) protein hydrolyzes ATP and dATP and promotes DNA strand exchange reactions. DNA strand exchange is greatly facilitated by the E. coli SSB protein. As is the case with the E. coli RecA protein, the use of dATP as a cofactor permits more facile displacement of bound SSB protein from ssDNA. However, there are important differences as well. The RecA(Dr) protein promotes ATP- and dATP-dependent reactions with distinctly different pH profiles. Although dATP is hydrolyzed at approximately the same rate at pHs 7.5 and 8.1, dATP supports an efficient DNA strand exchange only at pH 8.1. At both pHs, ATP supports efficient DNA strand exchange through heterologous insertions but dATP does not. Thus, dATP enhances the binding of RecA(Dr) protein to ssDNA and the displacement of ssDNA binding protein, but the hydrolysis of dATP is poorly coupled to DNA strand exchange. The RecA(Dr) protein thus may offer new insights into the role of ATP hydrolysis in the DNA strand exchange reactions promoted by the bacterial RecA proteins. In addition, the RecA(Dr) protein binds much better to duplex DNA than the RecA(Ec) protein, binding preferentially to double-stranded DNA (dsDNA) even when ssDNA is present in the solutions. This may be of significance in the pathways for dsDNA break repair in Deinococcus.  相似文献   

10.
In this study, the effects of high-LET radiation on DNA were investigated and compared with the effects of gamma radiation. Hydrated DNA samples at 77 K were irradiated with argon-ion beams ((36)Ar or (40)Ar beam at energies between 60 and 100 MeV/nucleon). The individual free radicals formed were identified and their yields were investigated by electron spin resonance spectroscopy. Argon-ion irradiation resulted in lower yields of base ion radicals and higher yields of neutral radicals than gamma irradiation. A hitherto unknown species was assigned to the radical formed by C-O bond rupture at the deoxyribose C3', resulting in a sugar carbon-centered radical. A previously characterized phosphorus-centered radical was also found. The formation of each of these species was accompanied by an immediate strand break. G values, k values, and analyses for the individual yields of neutral radicals and ion radical composition for argon-ion-irradiated hydrated DNA are reported and compared to those found previously for gamma-irradiated DNA. The lower G values and k values for ion radicals and the higher fraction of neutral radicals found for argon-ion-irradiated DNA are attributed to differences in track structure inherent in the two radiations.  相似文献   

11.
Summary The influence of cell concentration on the radiation sensitivity of diploid yeast cells is tested. At high cell concentrations the oxygen consumption by maintenance energy metabolism of the cells leads to anoxia under certain irradiation conditions. In this way the radiation sensitivity is reduced. The same effect may influence the liquid holding repair which is dependent on the energy flux in the cell. Inhibition of respiration in the cell due to anoxia again leads to an inhibition of liquid holding repair in the cell.Dedicated to Prof. Dr. Dr. h. e. mult. B. Rajewsky on the occasion of his 80th birthday. Biophysik, Bd. 10  相似文献   

12.
X-ray-induced chemistry modifies biological macromolecules structurally and functionally, even at cryotemperatures. The mechanisms of x-radiation damage in colored or redox proteins have often been investigated by combining X-ray crystallography with in crystallo-ultraviolet-visible spectroscopy. Here, we used Raman microspectrophotometry to follow the onset of damage in crystalline lysozyme, notably that of disulfide bond breakage. The dose-dependent Raman spectra are consistent with a kinetic model for the rupture of disulfide bonds suggesting the rapid build up of an anionic radical intermediate. This intermediate may either revert back to the oxidized state or evolve toward protonated radical species or cleaved products. The data strongly suggest that back conversion of the anionic radical is significantly accelerated by X-rays, revealing an X-ray-induced "repair" mechanism. The possibility of X-ray-induced chemical repair is an important feature to take into account when assessing radiation damage in macromolecules.  相似文献   

13.
The effect of U.V. radiation or alkylating agents, such as actinomycin-D, cycloheximide and mitomycin-C (MMC), was studied on CHO, BHK and HeLa cells. U.V. radiation caused DNA ssb and dsb and were prevented by cycloheximide and actinomycin-D. MMC is known to be cytotoxic in CHO/BHK cells by forming free radical generation. MMC in combination with U.V. radiation enhanced DNA ssb & dsb in these cell types. However, HeLa cells were insensitive to U.V. radiation. This insensitivity to U.V. radiation could be ascribed to the presence of glutathione transferase which is absent in CHO/BHK cell line.  相似文献   

14.
The RecA proteins of Escherichia coli (Ec) and Deinococcus radiodurans (Dr) both promote a DNA strand exchange reaction involving two duplex DNAs. The four-strand exchange reaction promoted by the DrRecA protein is similar to that promoted by EcRecA, except that key parts of the reaction are inhibited by Ec single-stranded DNA-binding protein (SSB). In the absence of SSB, the initiation of strand exchange is greatly enhanced by dsDNA-ssDNA junctions at the ends of DNA gaps. This same trend is seen with the EcRecA protein. The results lead to an expansion of published hypotheses for the pathway for RecA-mediated DNA pairing, in which the slow first order step (observed in several studies) involves a structural transition to a state we designate P. The P state is identical to the state found when RecA is bound to double-stranded (ds) DNA. The structural state present when the RecA protein is bound to single-stranded (ss) DNA is designated A. The DNA pairing model in turn facilitates an articulation of three additional conclusions arising from the present work. 1) When a segment of a RecA filament bound to ssDNA is forced into the P state (as RecA bound to the ssDNA immediately adjacent to dsDNA-ssDNA junction), the segment becomes "pairing enhanced." 2) The unusual DNA pairing properties of the D. radiodurans RecA protein can be explained by postulating this protein has a more stringent requirement to initiate DNA strand exchange from the P state. 3) RecA filaments bound to dsDNA (P state) have directly observable structural changes relative to RecA filaments bound to ssDNA (A state), involving the C-terminal domain.  相似文献   

15.
A DNA fraction has been isolated from total Chironomus thummi thummi DNA which is discernible from the bulk Ch. th. thummi DNA by a lower thermal stability. In situ hybridizations with polytene salivary gland chromosomes of Ch. th. thummi and Ch. th. piger made localization of this DNA fraction possible. Hybridizations with bands which contain different amounts of DNA in the two subspecies indicate that the isolated DNA fraction mostly consists of those sequences which represent the genetical difference between thummi and piger.This paper is dedicated to Professor Dr. H. Bauer on the occasion of his 75th birthday  相似文献   

16.
P F Heelis  A Sancar 《Biochemistry》1986,25(25):8163-8166
Escherichia coli DNA photolyase contains a stable flavin neutral blue radical that is involved in photosensitized repair of pyrimidine dimers in DNA. We have investigated the effect of illumination on the radical using light of lambda greater than 520 nm from either a camera flash or laser. We find that both types of irradiations result in the photoreduction of the flavin radical with a quantum yield of 0.10 +/- 0.02. While photoreduction with the camera flash is minimal in the absence of an electron donor (dithiothreitol), laser flash photolysis at 532 nm reduces the flavin to the same extent in the presence or absence or an electron donor. Thus, it is concluded that the primary step in photoreduction involves an electron donor that is a constituent of the enzyme itself. Laser flash photolysis produces a transient absorption band at 420 nm that probably represents the absorption of the lowest excited doublet state (2(1)IIII*) of the radical and decays with first-order kinetics with k1 = 0.8 X 10(6) s-1. The photoreduction data combined with the results of recent studies on the activity of dithionite-reduced enzyme suggest that electron donation by excited states of E-FADH2 is the mechanism of flavin photosensitized dimer repair by E. coli DNA photolyase.  相似文献   

17.
Mechanisms based on one-electron oxidation appear incomplete in explaining cellular radiosensitization by nitroaromatic compounds such as misonidazole. Evidence is presented for a novel mechanism that may be involved in enhancing DNA strand breakage due to a variety of agents, including ionizing radiation, that generate carbon-centered radicals on DNA deoxyribose. Under anaerobic conditions the carbon-centered radical generated selectively at C-5' of deoxyribose of thymidylate residues in DNA by the antitumor antibiotic neocarzinostatin reacts with misonidazole to produce a DNA damage product in the form of 3'-(formyl phosphate)-ended DNA. In an 18O-transfer experiment we find that the carbonyl oxygen of the activated formyl moiety (trapped as formyl-Tris) is derived from the nitro group oxygen of misonidazole. This result strongly supports a mechanism in which a nitroxide radical adduct, formed by the addition of misonidazole to the radical at C-5' of deoxyribose, cleaves between the N and O so as to form an oxy radical precursor of the formyl moiety and a two-electron reduction species of misonidazole.  相似文献   

18.
Exposure to ultraviolet B (UVB; 280‐320 nm) radiation induces the formation of reactive oxygen species (ROS) in the biological system. In this study, we examined the protective effect of carvacrol on UVB‐induced lipid peroxidation and oxidative DNA damage with reference to alterations in cellular an‐tioxidant status in human lymphocytes. A series of in vitro assays (hydroxyl radical, superoxide, nitric oxide, DPPH (2,2‐Diphenyl‐1‐picryl hydrazyl), and ABTS (2,2‐azino‐bis‐3‐ethylbenzothiazoline‐6‐sulfonic acid) radical scavenging assays) demonstrate antioxidant property of carvacrol in our study. UVB exposure significantly increased thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LHPs), % tail DNA and tail moment; decreased % cell viability and antioxidant status in UVB‐irradiated lymphocytes. Treatment with carvacrol 30 min prior to UVB‐exposure resulted in a significant decline of TBARS, LHP, % tail DNA, and tail moment and increased % cell viability as carvacrol concentration increased. UVB irradiated lymphocytes with carvacrol alone (at 10 μg/mL) gave no significant change in cell viability, TBARS, LHP, % tail DNA, and tail moment when compared with normal lymphocytes. On the basis of our results, we conclude that carvacrol, a dietary antioxidant, mediates its protective effect through modulation of UVB‐induced ROS.  相似文献   

19.
The enzymatic reduction of actinomycin D to a free radical species   总被引:1,自引:0,他引:1  
Actinomycin D is an antitumor antibiotic in current clinical use. The ability of this and other antitumor antibiotics to undergo a reductive metabolism to produce free radical species has raised considerable interest in the literature in the past few years. The ability of actinomycin D to undergo a reductive metabolism was investigated using a ferredoxin reductase/NADPH system. This enzyme system has been used by a number of authors as a model for an enzymatic drug reducing system. In this study radical production was measured using direct ESR spectroscopy, the spin trapping technique, and oxygen consumption. It was shown that under anaerobic conditions the ferredoxin reductase/NADPH system could reduce actinomycin D to produce a semiquinone-imine free radical (aN = 2.8 (2N); aH = 2.8 (3H)). This radical production was found to be both drug and NADPH dependent. The effect of DNA on the drug's metabolism was also investigated. This was thought to be important because the proposed therapeutic action of the drug is centered on the DNA. Addition of calf thymus DNA to the reaction system abolished the signal produced by the actinomycin D, suggesting that intercalated actinomycin D is not a suitable substrate for ferredoxin reductase. Under aerobic conditions the ferredoxin reductase/NADPH/actinomycin D system generated the superoxide anion radical by reducing molecular oxygen. Evidence for this was obtained by spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The DMPO-superoxide radical adduct was produced (aN = 14.4 G; aH beta = 11.4 G; aH gamma = 1.3 G). Production of this adduct was drug and NADPH dependent, and was inhibited by superoxide dismutase. Superoxide production was also monitored by oxygen consumption studies.  相似文献   

20.
Cell killing and other deleterious biological effects of ionizing radiation are the result of chemical changes to critical targets, initiated at the time of exposure. Electron-affinic radiosensitizers act, primarily, by chemically modifying this radiation damage and its consequent biological expression, and such changes can be used to probe the nature of the cellular radiation target. According to a redox hypothesis of radiation modification, the molecular mechanism of electronic-affinic radiosensitization involves an oxidative interaction of the sensitizer with reactive, potentially damaging target radicals, which competes with reductive processes that restore the target to its undamaged state. The effects have been compared of a series of hypoxic cell radiosensitizers on radiation-induced DNA damage and mammalian cell killing, in order to ascertain the nature of the critical radiation target site(s) involved. Sensitizer efficacy is determined by the ability to oxidize the radiation target and is found to increase exponentially with increasing electron affinity. The threshold redox potential, below which no sensitization occurs, corresponds to the oxidation potential of the target bioradical involved, and is characteristic, and useful in identification, of the particular radiation target. Model product analysis studies of DNA base damage, inorganic phosphate release, single-strand breaks and incorporation of radioactively labelled sensitizer into DNA show a correspondence between the electronic-affinic radiosensitization of DNA damage and cell killing. A careful comparison of the radiosensitization of different DNA sites and cell killing indicates that the sugar-phosphate backbone of DNA, not the heterocyclic bases, is the DNA target site which mimics cell killing in its threshold redox potential and overall radiosensitization response. These results suggest that the enhancement by electron-affinic drugs of radiation damage to the DNA backbone (strand breaks) correlates strongly with, and is the most likely cause of, the radiosensitization of hypoxic cell killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号