首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster cells (line CHEF-125) were cultured for 1 or 4 h in the presence of tritiated thymidine (3HTdR). Immediately after the end of the treatment with 3HTdR or 4 h afterwards, some cultures were irradiated with X-rays, while others served as controls.Analysis of colchicine-C anaphase of M1 and M2 cells showed that: (a) in the M1 chromosomes the X-rays produced a significant departure from a 1:1 ratio of the number of silver grains counted on the sister chromatids; and (b) in the M2 chromosomes the X-rays increased significantly the frequency of sister-chromatid exchanges and of isolabelling regions.Subchromatid exchanges involving a single polynucleotide strand may be induced by X-rays. These exchanges would cause inequality of labelling over M1 sister chromatids and isolabelling in the M2 chromosomes.  相似文献   

2.
Summary The three-way differentiation of sister chromatids (3-way SCD) in M3 endoreduplicated chromosomes in a Bloom syndrome (BS) B-lymphoid cell line, suggested that in addition to exchanges between sister chromatids (intra-exchanges), non-sister chromatid exchanges (inter-exchanges) also occur, especially in BS high SCE cells. In BS diploid chromosomes such inter-exchanges probably get confused with intra-exchanges when total SCEs are accounted for. Bloom syndrome high SCE cells probably do not follow the same bromodeoxyuridine (BrdU) uptake pattern over three cell cycles as normal cells. The 3-way SCD in M3 endoreduplicated chromosomes can be explained on the basis of Schvartzman's second model (1979) as well as Miller's model (1976), depending on the pattern of uptake of BrdU over three cell cycles. An interference in the previous events of exchanges in the following cell cycle (i.e., cancellation of SCEs) in BS chromosomes was observed in some regions, though not in high numbers.  相似文献   

3.
DNA double-strand breaks (DSBs) are arguably the most important lesions induced by ionizing radiation (IR) since unrepaired or misrepaired DSBs can lead to chromosomal aberrations and cell death. The two major pathways to repair IR-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination (HR). Perhaps surprisingly, NHEJ represents the predominant pathway in the G1 and G2 phases of the cell cycle, but HR also contributes and repairs a subset of IR-induced DSBs in G2. Following S-phase-dependent genotoxins, HR events give rise to sister chromatid exchanges (SCEs), which can be detected cytogenetically in mitosis. Here, we describe that HR occurring in G2-irradiated cells also generates SCEs in ∼50% of HR events. Since HR of IR-induced DSBs in G2 is a slow process, SCE formation in G2-irradiated cells requires several hours. During this time, irradiated S-phase cells can also reach mitosis, which has contributed to the widely held belief that SCEs form only during S phase. We describe procedures to measure SCEs exclusively in G2-irradiated cells and provide evidence that following IR cells do not need to progress through S phase in order to form SCEs.Key words: sister chromatid exchanges, double-strand break repair, ionizing radiation, homologous recombination, G2 phase  相似文献   

4.
Studies of classical chromosome aberrations and sister-chromatid exchanges (SCES) suggest independent mechanisms for the two events despite some common features. Examination of chromosome breakage caused by X-rays, visible light, and viruses has shown that few chromatid breaks are accompanied by SCEs at the sites of breaks. No similar observations were available for chemically induced breaks, but it has been reported that rat chromosomes exposed to dimethylbenzanthracene (DMBA) contained a preponderance of both aberrations and SCEs in certain specific regions, implicating a common process in their formation. These conclusions were drawn from a comparison of breaks induced in vivo with SCEs induced in vitro. However, we used 7 chemical mutagens to induce both chromatid breaks and SCEs in "harlequin" chromosomes of cultured rat and Chinese hamster ovary (CHO) cells and found that 25% of the 914 breaks scored were associated with SCEs. The proportion of breaks accompanied by SCEs is related to the overall SCE frequency and falls into the range predicted on the basis that breaks and SCEs occur independently. The reported association between sites for SCEs and aberrations also reflects secondary factors, such as induction of SCEs and aberrations during DNA synthesis in late replicating regions of the chromosomes.  相似文献   

5.
In vivo cyclophosphamide (CP)-induced sister chromatid exchanges (SCEs) were evaluated in females from five genetic strains of mice (C57BL/6J, C3H/S, 129/ReJ, BALB/c and DBA/2) and their F1 hybrids. Baseline (noninduced) SCE values differ significantly among strains, 129/ReJ having the lowest and DBA/2 having the highest mean SCE per cell values. In general, the baseline SCE of a given F1 is within the range of its corresponding parental strains or near the lower parental value. Furthermore, there is a genotype-dependent increase in mean SCEs per cell with CP dose. Strain differences in SCE induction are noted particularly at the two higher CP doses (4.50 and 45.0 mg/kg). In general, F1 hybrids involving a strain with high induced SCEs and a strain with low induced SCEs exhibit mean SCE values that are closer to the value of the lower strain. F1 s involving two strains with high SCEs or two strains with low SCEs yield SCEs not different from parental strains. The method of diallel cross analysis showed the order of dominance of these strains in SCE induction to be 129/ReJ BALB/c C3H/S DBA/2 C57BL/6J. These results support the involvement of predominantly nonadditive genetic factors as major gene(s) in SCE induction. In addition, involvement of random and independent events in SCE induction is suggested by the distribution of SCEs which follows a Poisson distribution.  相似文献   

6.
Cells in third mitosis treated during the first cell cycle with 3H-TdR and during the next two cycles with BrdU (without 3H-TdR) show a typical pattern of chromosome differentiation which allows identification of sister chromatid exchanges occurring during the first (SCE1, second (SCE2) and third cycles (SCE3). Chromosomes labeled only with 3H-TdR had the most SCEs; those labeled only with BrdU, the second highest number; and those labeled with 3H-TdR plus BrdU, the fewest. Since BrdU and 3H-TdR are well known inducers of SCEs, the relatively low frequency of exchanges produced by the combined action of these two compounds is paradoxical. — It is assumed that SCEs are generated by the abnormal recombination of double-strand DNA breaks occurring at the junctions between completely and partially duplicated replicon clusters. Thus, agents that induce absolute blocks to DNA fork displacement will favor the appearance of SCEs because double-strand breaks have more time to occur at junctions. Conversely, agents that inhibit the initiation of replication will decrease the probability of SCEs. Ionizing radiation delays the onset of cluster replication. Therefore, in 3H-TdR plus BrdU-substituted chromosomes the radiation from tritium may inhibit the appearance of BrdU-induced SCEs. Since the inhibition does not exist in chromosomes substituted only with BrdU, the frequency of SCEs in these elements is higher than in double-substituted chromosomes. During the first cell cycle the onset of cluster replication is normal. However, the incorporation of 3H-TdR in the replication fork may enhance the appearance of double-strand breaks, thus inducing a high frequency of SCEs.  相似文献   

7.
Chinese hamster lung embryonic cells (CL1) were treated with colchicine in order to induce endoreduplication and subsequently with mitomycin-C (MMC) to induce exchanges within the diplochromosome. The use of chromosomal differential staining through incorporation of 5-bromodeoxyuridine, resulting in only one stained chromatid, has allowed the analysis of all classes of exchanges among the four chromatids of the diplochromosome. Three classes of exchanges may occur: intradiplochromatid exchanges (ICEs) between the two inner chromatids, cousin chromatid exchanges (CCEs) between one inner and one outer chromatid, and sister chromatid exchanges (SCEs) between the two sister chromatids of the diplochromosome. The results show that MMC treatment, in the last cell cycle of endoreduplication, as expected, significantly increases only the frequency of SCEs, whereas the frequency of ICEs and CCEs remains unchanged. This result supports replication models of formation of SCEs. Furthermore the fact that the number of ICEs does not increase means that the molecular mechanism of somatic crossing over is not related to that of SCE formation, or very rarely. The results also indicate a statistically significant lower induction of SCEs in endoreduplicated metaphases as compared with diploid ones both in control and MMC-treated cells. Such a result may be due to structural restrictions within the diplochromosome. Received: 29 December 1995; in revised form; 4 March 1996 / Accepted: 24 March 1996  相似文献   

8.
Germinated seeds ofVicia faba were continuously irradiated at low dose rate of gamma rays (0.05 Gy h-1) up to a total accumulated dose of 2 Gy. The FPG (fluorescence plus Giemsa) technique of differential chromatid staining was used to monitor the frequency of sister chromatid exchanges (SCEs) in irradiated root tip meristem cells. The results of the experiments have demonstrated that SCE frequency is raised by continuous gamma irradiation only in plant cells containing BrdU in the chromosomal DNA. No effect concerning SCE formation was recorded at continuous irradiation of meristematic cells of Vicia faba with native, i. e. BrdU-nonsubstituted, DNA. In contrast to SCEs, a significant increase was found in the yield of chromosomal aberrations in all variants of irradiation.  相似文献   

9.
The frequency of sister chromatid exchanges (SCEs) in two cell lines of Drosophila melanogaster with different karyotypes (XX and XY) was determined, considering (1) the distribution of SCEs within each chromosome, with reference to eu- and heterochromatin and (2) the distribution of SCEs in different chromosomes. A comparison was made between chromosome pairs within each karyotype and between the two different karyotypes. The following results were obtained. The SCEs are not randomly distributed along chromosomes, since exchanges were never observed in heterochromatin. SCEs are more frequent in XY than in XX cells; moreover, in both cell types there exists a significantly higher frequency of SCEs in the X chromosome than in the autosomes. These findings are discussed in relation to chromosome aberrations and mitotic recombination.  相似文献   

10.
Takaji Ikushima 《Chromosoma》1990,99(5):360-364
The cell cycle dependence of sister chromatid exchanges (SCEs) induced by luminol, a new potent inhibitor of poly(ADP-ribose) synthetase, was studied in Chinese hamster V79 cells. Continuous treatment with luminol during two whole cell cycles in the presence of 5-bromo-2-deoxyuridine (BrdUrd), or in the first or second cycle induced SCEs very efficiently in a linear dosedependent manner. However, no enhancement of SCE levels was observed after luminol treatment in a cycle preceding BrdUrd treatment, in contrast to results found with other strong SCE inducers such ascis-diammine-dichloroplatinum (II) (CDDP) and mitomycin C (MMC). Luminol was about ten times as effective in inducing SCEs as 3-aminobenzamide (3AB), an inhibitor of the NAD+ site of poly(ADP-ribose) synthetase. The induction of SCEs by luminol was restricted to the Sphase of the cell cycle with peaks at an early and a late stage, corresponding to the biphasic replication of DNA. The mechanism of SCE appears to be the same at the early and late stages of S-phase for luminol-induced SCE formation.  相似文献   

11.
Summary Peripheral blood lymphocytes from three patients with Down syndrome (DS; trisomy 21; aged 5–6 years) and three age-matched control children were studied for the induction of chromosomal aberrations and sister chromatid exchanges (SCEs).Cells in G0 were exposed to bleomycin (20–100 g/ml) for 3 h, and then cultured in medium containing 5-bromodeoxyuridine and phytohemagglutinin for 66 h. By the sister chromatid differential staining method, chromosome analyses were performed on metaphase cells that had divided one, two, or three or more times after treatment. The results indicate that DS cells exposed to bleomycin are hypersensitive to the production of dicentric and ring chromosomes compared to normal cells. Bleomycin also led to a dose-related increase in the frequency of SCEs, but no difference was found between the SCE frequencies in DS or normal lymphocytes exposed to bleomycin.  相似文献   

12.
IF cells of eukaryotes are pulse-labelled with tritiated thymidine and then allowed to pass through mitosis (M1) and complete a second round of DNA replication (S2) without label, at the next mitosis (M2) the label is seen to segregate semi-conservatively; that is, with the exception of sister chromatid exchanges, all the label will pass to one chromatid1–4.  相似文献   

13.
Cytogenetic analysis of chromosome aberrations (CAs) and sister chromatid exchanges (SCEs) was performed in 109 blood samples from 95 pediatric patients with urinary tract infections (UTIs). Children were exposed to diagnostic levels of X-rays during voiding cystourethrography and subsequently treated for one to 12 months with low doses of furagin - N-(5-nitro-2-furyl)-allylidene-1-aminohydantoin. Furagin is 2-substituted 5-nitrofuran, chemically and structurally similar to well-known antibacterial compound nitrofurantoin. Increased frequencies of CAs were found in children undergoing voiding cystourethrography as compared with the unexposed, acentric fragments being the most frequent alteration (2.03 versus 0.88 per 100 cells, P=0.006). However, a significant decrease in the frequency of acentric fragments was determined with the time elapsed since X-ray examination was performed. A time-independent increase in SCE frequency was found in lymphocytes of children treated with furagin. Total CA frequency did not differ significantly between groups of children with various duration of furagin treatment. However, frequency of chromatid exchanges (triradials and quadriradials) increased significantly with duration of treatment.  相似文献   

14.
A K Giri  S K Das  G Talukder  A Sharma 《Cytobios》1990,62(249):111-117
Sister chromatid exchanges (SCEs) and chromosomal aberrations induced by curcumin (a natural dye) and tartrazine (a synthetic dye) were studied on bone marrow cells of mice and rats following acute and chronic exposure via the diet. Except for two low concentrations in the curcumin and one low concentration in the tartrazine treated series a significant increase in SCEs was observed in all the concentrations of the two dyes tested. Except for two high concentrations during the 9 months treatment no significant increase in chromosomal aberrations was observed in the curcumin treated series, whereas tartrazine showed a significant increase in chromosomal aberrations in some of the higher concentrations in all the series tested. The results indicate that tartrazine is more clastogenic than curcumin.  相似文献   

15.
In Drosophila melanogaster cell lines and larval neuroblast cells, two aspects of the phenomenon of sister chromatid exchanges were analyzed: (1) the frequency of SCEs in relation to the ploidy level (comparing diploid and tetraploid cells) and in relation to the cell type (comparing embryonic and larval cells) (2) the localization of the sites of exchange with reference to eu- and heterochromatin. A good correlation between SCE frequency and genome size in the same cell type (in distant species also), but a significant difference in the SCE rate between different cell types within the same species, were found. The results confirmed also the non-random distribution of SCEs in the different portions of the genome since a preferential localization in the euchromatin was clearly demonstrated. Moreover, a direct proportionality between SCE frequency and the length of the S phase was supposed, favouring the hypothesis of a relationship between the phenomenon of sister chromatid exchanges and DNA replication.  相似文献   

16.
N,N-Diethylaniline is a reagent used in organic synthesis and is an important intermediate in the manufacturing of dyes. To evaluate its genotoxicity, we examined whether it can induce sister chromatid exchanges (SCEs) in human lymphocytes. We found that N,N-diethylaniline significantly increased the frequency of SCEs both in the absence and presence of S-9 mix. The SCEs from cultures treated by N,N-diethylaniline in the presence of S-9 mix displayed a marked increase which was about 5-fold greater than the control. ANOVA analyses indicated that there is a dose–response relationship between doses of N,N-diethylaniline and the frequency of SCEs, especially in the presence of S-9 mix. The results suggested that N,N-diethylaniline has genotoxicity.  相似文献   

17.
Summary A mean frequency of 20.6 sister chromatid exchanges (SCEs) per cell has been observed in a reconstructed karyotype of Hordeum vulgare by application of the FPG technique after unifilar incorporation of BrdU into chromosomes. The involvement in SCEs of the 48 segments into which the chromosome set had been subdivided was, with a single deviation, length proportional and independent of the segment's heterochromatin content. Asymmetric bands, indicative of an uneven distribution of adenine and thymidine between the DNA strands in adenine (A)-thymidine (T) rich chromosome regions, could not be detected after incubation of the cells in BrdU for one cycle of DNA replication.  相似文献   

18.
Localization by Q-banding of mitotic chiasmata in cases of Bloom's syndrome   总被引:12,自引:0,他引:12  
In this paper methodology is described which yields three-way Giemsa differentiation (light-medium-dark) in human metaphase chromosomes exposed to 5-bromode-oxyuridine (BrdU) for 3 DNA synthetic periods (or exposed for 2 DNA synthetic periods and removed from exposure for the third) by means of which all of the sister chromatid exchanges (SCEs) occurring during (or shortly after) S1, S2 and S3 can be accurately counted and distinguished from one another. Using these methods it has been demonstrated that approximately twice as many SCEs occur during the first S-period in the presence of the drug (labeling= B1T0×T0B1)1 as occur during the second S-period (labeling=B2B1× T0B2)1. The three-way differentiation pattern is thought to result from a stepwise decrease in the amount of BrdU incorporated during the first, second and third DNA synthetic periods. These methods can also be used to differentiate between unlabeled (T2T0) and unifilarly labeled (B1T2) sister chromatids and are potentially useful in the detection of sub-chromatid exchanges (none were detected).  相似文献   

19.
CHO cells were pre-treated with sodium butyrate (SB) for 24 h and then X-irradiated in G1. Metaphases were scored for the induction of chromosomal aberrations and sister chromatid exchanges (SCEs). The data were compared with those obtained after irradiation of cells not pre-treated with SB and showed that SB has different effects on the endpoints examined. The frequencies of dicentric chromosomes were elevated and of small acentric rings (double minutes, DMs) reduced. These results are discussed to be a consequence of conformational changes in hyperacetylated chromatin which could lead to more interchromosomal and to less intrachromosomal exchanges. SB itself induces a few SCEs but suppresses the induction of SCEs by X-rays. We assume that a minor part of radiation induced SCEs are 'false' resulting from structural chromosomal aberrations, such as inversions, induced in G1. Inversions are the symmetrical counterparts of DMs. If inversions are suppressed by SB treatment to a similar extent as DMs a small reduction of SCEs by SB can be expected.  相似文献   

20.
Vos  J.  van der Putten  P.E.L. 《Plant and Soil》2001,236(2):263-273
In temperate climates with a precipitation surplus during autumn and winter, nitrogen (N) catch crops can help to reduce nitrogen losses from cropping systems by absorbing nitrogen from the soil and transfer it to a following main crop. In two field experiments the catch crop species winter rye (Secale cereale) and forage rape (Brassica napus ssp. oleifera (Metzg.) Sinsk) or oil radish (Raphanus sativus spp. oleiferus (DC.) Metzg.) were planted end of August and 3 weeks later with a non-limiting supply of N and zero-N controls. In the next spring catch crops were incorporated into the soil. In Expt 1, N transfer was measured as (i) the N uptake of a potato test crop, grown with zero and 12.5 g m–2 N applied, and (ii) the increase in soil mineral N (0–30 cm) in uncropped soil covered with polythene film. In Expt 2, N transfer was measured as the increase in soil mineral N in covered cylinders placed in uncropped soil (in situ incubation). Subsidiary laboratory incubations were performed in Expt 2. In Expt 1, the apparent recovery in potato of fertilizer N (R f) was 0.56. The recovery in potato of N mineralized from 'native' N pools other than catch crop material (R n) ranged from 0.43 to 0.51, depending on the value assumed for the depth of N extraction by potato roots. The average recovery in potato of incorporated catch crop N (R c) was 0.34. Expressed as `fertilizer N replacement factor' (F r) the latter was 0.61 (i.e. 1 kg of N in catch crop material counts for 0.61 kg fertilizer N). Under the film in Expt 1 the fraction net mineralization of incorporated catch crop N (M n) was 0.36 on August 11 and 0.43 on October 18. In Expt 2, the average value of M n was 0.31, which was lower than in Expt 1 and probably associated with the drier soil in Expt 2. In the laboratory incubations (20°C) M n showed values up to 0.54 after 84 days with the largest rates of change in mineralization occuring early after the start of the incubation. In conjunction with literature data it is concluded that cultivation of nitrogen catch crops shows promise as a means to reduce N input and N losses in temperate climates with wet winters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号