首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The amyloid ß-peptide (Aß) is involved in the mechanisms of Alzheimer dementia. This paper reviews experimental evidence indicating that Aß exerts profound effects on the regulation of the cerebral circulation.2. Thus, Aß compromises the ability of cerebral endothelial cells to produce vascular relaxing factors, impairs the ability of cerebral blood vessels to maintain adequate flow during hypotension, and attenuates the increases in CBF evoked by enhanced brain activity.3. Studies in transgenic mice overexpressing the amyloid precursor protein suggest that these cerebrovascular alterations disrupt the delicate balance between the brain's energy requirements and cerebral blood supply, rendering the brain more vulnerable to ischemic injury.4. The findings support the recently emerged notion that vascular factors play a pathogenic role in the early stages of Alzheimer dementia.  相似文献   

2.
Vascular corrosion casts of Syngnathus floridae and Syngnathus fuscus brood pouches were examined by scanning electron microscopy. Morphological and quantitative data on the vasculature of the paternal brood pouch during each stage of embryonic development were investigated to explore potential changes during brooding, to consider interspecific differences and to provide structural evidence for previously reported functional roles of the brood pouch. The brood pouches of both species are highly vascularized structures with cup‐like arrangements of brood‐pouch vasculature developing around each embryo shortly after fertilization and breaking down before fry release. The density and size of paternally derived blood vessels in contact with the embryos were found to be consistent for S. fuscus once this structure was established early in development. On the contrary, these vasculature measurements varied with early S. floridae brood stages when the embryo still relied heavily on the yolk sac. Diameter measurements of S. fuscus brood‐pouch blood vessels were also comparatively smaller during these early developmental stages, suggesting that the structural stability and opportunity for greater transport via slower blood flow may contribute to greater paternal allocation. This is the first study to document changes in brood‐pouch vasculature during specific stages of embryonic development, to show regression of this vasculature before fry release and to provide morphological data for two syngnathid species for which information on brood‐pouch physiology is available.  相似文献   

3.
During early human embryonic development, blood vessels are stimulated to grow, branch, and invade developing tissues and organs. Pluripotent human embryonic stem cells (hESCs) are endowed with the capacity to differentiate into cells of blood and lymphatic vessels. The present study aimed to follow vasculogenesis during the early stages of developing human vasculature and to examine whether human neovasculogenesis within teratomas generated in SCID mice from hESCs follows a similar course and can be used as a model for the development of human vasculature. Markers and gene profiling of smooth muscle cells and endothelial cells of blood and lymphatic vessels were used to follow neovasculogenesis and lymphangiogenesis in early developing human embryos (4-8 weeks) and in teratomas generated from hESCs. The involvement of vascular smooth muscle cells in the early stages of developing human embryonic blood vessels is demonstrated, as well as the remodeling kinetics of the developing human embryonic blood and lymphatic vasculature. In teratomas, human vascular cells were demonstrated to be associated with developing blood vessels. Processes of intensive remodeling of blood vessels during the early stages of human development are indicated by the upregulation of angiogenic factors and specific structural proteins. At the same time, evidence for lymphatic sprouting and moderate activation of lymphangiogenesis is demonstrated during these developmental stages. In the teratomas induced by hESCs, human angiogenesis and lymphangiogenesis are relatively insignificant. The main source of blood vessels developing within the teratomas is provided by the murine host. We conclude that the teratoma model has only limited value as a model to study human neovasculogenesis and that other in vitro methods for spontaneous and guided differentiation of hESCs may prove more useful.  相似文献   

4.
It has been well established that a functioning vascular supply is essential for solid tumor growth and metastases. In the absence of a viable vascular network, tumors are unable to grow beyond a few millimeters and therefore remain dormant. Initiation of angiogenesis allows for continued tumor growth and progression. Targeting tumor vasculature, either by inhibiting growth of new tumor blood vessels (antiangiogenic agents) or by destroying the already present tumor vessels (vascular disrupting agents; VDA), is an area of extensive research in the development of new antitumor agents. These two groups differ in their direct physiological target, the type or extent of disease that is likely to be susceptible, and the treatment schedule. VDAs target the established tumor blood vessels, resulting in tumor ischemia and necrosis. These agents show more immediate effects compared to antiangiogenic agents and may have more efficacy against advanced bulky disease. VDAs can be divided into two groups--ligand-bound and small molecule agents. Both VDA groups have demonstrated antitumor effects and tumor core necrosis, but consistently leave a thin rim of viable tumor cells at the periphery of the tumor. More evidence suggests VDAs will have their greatest effect in combination with conventional chemotherapy or other modes of treatment that attack this outer rim of cells.  相似文献   

5.
The ductus arteriosi (DA) are embryonic blood vessels found in amniotic vertebrates that shunt blood away from the pulmonary artery and lungs and toward the aorta. Here, we examine changes in morphology of the right and left DA (LDA), and right and left aorta (LAo) from embryonic and hatchling alligators. The developing alligator has two‐patent DA that join the right and LAo. Both DA exhibit a muscular phenotype composed of an internal smooth muscle layer (2–4 cells thick). At hatching, the lumen diameter of both DA decreases as the vessels begin to close within the first 12 h of posthatch life. Between day 1 and day 12 posthatching, the vessel becomes fully occluded with endothelial and smooth muscle cells filling the lumen. A number of DA from hatchlings contained blood clots along their length. The lumen of the full term alligator DA is reduced in comparison with the full term chicken DA. The developing alligator embryo has an additional right‐to‐left shunt pathway in the LAo arising from the right ventricle. The embryonic LAo diameter is twice the diameter of either the right DA or LDA, providing a lower resistance pathway for blood leaving the right ventricle. On the basis of these findings, we propose that the paired DA of the embryonic alligator have a reduced role in the embryonic right‐to‐left shunt of blood from the right ventricle when compared with the avian DA. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
《IRBM》2022,43(6):561-572
ObjectivesCerebrovascular disease is a serious threat to human health. Because of its high mortality and disability rate, early diagnosis and prevention are very important. The performance of existing cerebrovascular segmentation methods based on deep learning depends on the integrity of labels. However, manual labels are usually of low quality and poor connectivity at small blood vessels, which directly affects the cerebrovascular segmentation results.Material and methodIn this paper, we propose a new segmentation network to segment cerebral vessels from MRA images by using sparse labels. The long-distance dependence between vascular structures is captured by the global vascular context module, and the topology is constrained by the hybrid loss function to segment the cerebral vessels with good connectivity.ResultExperiments show that our method performed with a sensitivity, precision, dice similarity coefficient, intersection over union and centerline dice similarity coefficient of 61.24%, 75.58%, 67.66%, 51.13% and 83.79% respectively.ConclusionThe obtained results reveal that the proposed cerebrovascular segmentation network has better segmentation performance for cerebrovascular segmentation under sparse labels, and can suppress the noise of background to a certain extent.  相似文献   

7.
《Journal of morphology》2017,278(4):574-591
Embryos of oviparous reptiles develop on the surface of a large mass of yolk, which they metabolize to become relatively large hatchlings. Access to the yolk is provided by tissues growing outward from the embryo to cover the surface of the yolk. A key feature of yolk sac development is a dedicated blood vascular system to communicate with the embryo. The best known model for yolk sac development and function of oviparous amniotes is based on numerous studies of birds, primarily domestic chickens. In this model, the vascular yolk sac forms the perimeter of the large yolk mass and is lined by a specialized epithelium, which takes up, processes and transports yolk nutrients to the yolk sac blood vessels. Studies of lizard yolk sac development, dating to more than 100 years ago, report characteristics inconsistent with this model. We compared development of the yolk sac from oviposition to near hatching in embryonic series of three species of oviparous scincid lizards to consider congruence with the pattern described for birds. Our findings reinforce results of prior studies indicating that squamate reptiles mobilize and metabolize the large yolk reserves in their eggs through a process unknown in other amniotes. Development of the yolk sac of lizards differs from birds in four primary characteristics, migration of mesoderm, proliferation of endoderm, vascular development and cellular diversity within the yolk sac cavity. Notably, all of the yolk is incorporated into cells relatively early in development and endodermal cells within the yolk sac cavity align along blood vessels which course throughout the yolk sac cavity. The pattern of uptake of yolk by endodermal cells indicates that the mechanism of yolk metabolism differs between lizards and birds and that the evolution of a fundamental characteristic of embryonic nutrition diverged in these two lineages. Attributes of the yolk sac of squamates reveal the existence of phylogenetic diversity among amniote lineages and raise new questions concerning the evolution of the amniotic egg. J. Morphol. 278:574–591, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
The aim of this study was to perform a pilot histological and quantitative analysis of the blood vessels accompanying the epicardial nerves (vasa nervorum) in the porcine hearts. Twenty healthy porcine hearts were used in this study. The blood vessels were analyzed by light microscopy using four different staining techniques in transverse sections taken from the upper, middle, and lower segments of the anterior part of the interventricular region and the adjacent parts of the right and left ventricles containing epicardial nerves and the endocardial peripheral parts of the Purkinje fibers. In total, 317 epicardial nerves were detected. The vasa nervorum were present in 75.7% of these nerves. The vasa nervorum resembled arterioles and postcapillary and collecting venules. One hundred and forty nine epicardial nerves were perivascular, located in the adventitia of the anterior interventricular artery and vein. The remaining 168 nerves ran freely through the epicardial interstitium. The presence of the vasa nervorum was not related to topographical location or nerve diameter. Additionally, from a total of 33 analyzed ventricular complexes of Purkinje fibers small blood vessels located in their proximity were identified in only two cases. It can be concluded that the majority of the anterior epicardial nerves of porcine heart possess well-developed vasa nervorum. In contrast, similar blood vessels are rarely present in the vicinity of the Purkinje fibers. The data obtained contribute to a better understanding of the nutrition of the cardiac nerves.  相似文献   

9.
The vessels of the forelimb stump and regenerate were perfused with Prussian blue and studied as whole mounts and in histological sections to reveal the condition and disposition of the blood vessels in various stages of forelimb regeneration in the adult newt, Triturus viridescens. The development of the vessels in the regenerate seemed to be comparable in all its essential features to that which has been described for the normal developing limb in urodele, chick and pig embryos. The first signs of regeneration of the vessels are seen during wound healing when fine sprouts appear from the old vessels near the amputation wound. These grow and anastomose, but are limited to the transition region between old and new tissues and avoid the growing blastema during the early stages of regeneration. As the regenerate enlarges into a conical structure vessels invade the proximal part of the growth and avoid the distal regions. It is only during the stages of histogenesis and morphogenesis that vessels grow into more distal regions. The regions of most active enlargement of the early or later regenerate are those most poorly vascularized. These results are discussed against the background of the activity of certain enzymes during regeneration. In the advanced regenerate, preferential channels are consolidated until in the palette and digital stages the pattern of the blood vessels resembles that of the normal limb.  相似文献   

10.
We studied the opisthonephric (mesonephric) kidneys of adult male and female Xenopus laevis using scanning electron microscopy (SEM) of vascular corrosion casts and light microscopy of paraplast embedded tissue sections. Both techniques displayed glomeruli from ventral to mid-dorsal regions of the kidneys with single glomeruli located dorsally close beneath the renal capsule. Glomeruli in general were fed by a single afferent arteriole and drained via a single thinner efferent arteriole into peritubular vessels. Light microscopy and SEM of vascular corrosion casts revealed sphincters at the origins of afferent arterioles, which arose closely, spaced from their parent renal arteries. The second source of renal blood supply via renal portal veins varied interindividually in branching patterns with vessels showing up to five branching orders before they became peritubular vessels. Main trunks and their first- and second-order branches revealed clear longish endothelial cell nuclei imprint patterns oriented parallel to the vessels longitudinal axis, a pattern characteristic for arteries. Peritubular vessels had irregular contours and were never seen as clear cylindrical structures. They ran rather parallel, anastomosed with neighbors and changed into renal venules and veins, which finally emptied into the ventrally located posterior caval vein. A third source of blood supply of the peritubular vessels by straight terminal portions of renal arteries (vasa recta) was not found.  相似文献   

11.
Allogeneic blood vessels are regarded as one of the best natural substitutes for diseased blood vessels due to their good vascular compliance and histocompatibility. Since the supply and demand of allograft blood vessels do not always match in time and space, a good preservation scheme for isolated blood vessels is essential. The abdominal aortas of 110 male Sprague–Dawley (SD) rats were randomly divided into three groups, including cold storage group (4°C) (CSG), frozen storage group (FSG) and ambient storage group (25 ± 2°C) (ASG). Seven time points of preservation for 1, 3, 5, 7, 14, 30 and 90 days were set for detection. The changes in vascular physiological function were evaluated by MTT test and vasoconstriction ability detection, and the changes in vascular wall structure were evaluated by the tension tolerance test and pathological staining. The vascular function of CSG was better than FSG within first the 7 days, but the result was opposite since the 14th day. The vascular wall structure, collagen and elastic fibres of vessels, in CSG, showed oedema within 30 days, and continuous disintegration and rupture at 90 days. The vessel wall structure of FSG remained intact within 90 days. The tensile strength of the vessels in CSG was better than that in FSG within 5 days, and there was no statistical difference between the two groups between the 7th and 30th day, and then, the FSG was higher than CSG on the 90th day. Both cold storage and frozen storage could be applied as safe and effective preservation schemes for isolated rat artery within first 30 days. Cold storage is recommended when the storage time is <14 days, and then, frozen storage is better.  相似文献   

12.
The primary capillary plexus in early yolk sacs is remodeled into matured vitelline vessels aligned in the direction of blood flow at the onset of cardiac contraction. We hypothesized that the influence of fluid shear stress on cellular behaviors may be an underlying mechanism by which some existing capillary channels remain open while others are closed during remodeling. Using a recently developed E-Tmod knock-out/lacZ knock-in mouse model, we showed that erythroblasts exhibited rheological properties similar to those of a viscous cell suspension. In contrast, the non-erythroblast (NE) cells, which attach among themselves within the yolk sac, are capable of lamellipodia extension and cell migration. Isolated NE cells in a parallel-plate flow chamber exposed to fluid shear stress, however, ceased lamellipodia extension. Such response may minimize NE cell migration into domains exposed to fluid shear stress. A two-dimensional mathematical model incorporating these cellular behaviors demonstrated that shear stress created by the blood flow initiated by the embryonic heart contraction might be needed for the remodeling of primary capillary plexus.  相似文献   

13.
Vascular tissue engineering has been considered promising as one of the alternatives for viable artificial tissues and organs. Macro- and microscale hollow tubes fabricated with various techniques have been widely studied to mimic blood vessels. To date, the fabrication of biomimetic capillary vessels with sizes ranging from 1 to 10 µm is still challenging. In this paper, core-sheath microtubes were electrospun to mimic capillary vessels and were embedded in carboxymethyl cellulose/sodium alginate hydrogel for bioprinting. The results showed improved printing fidelity and promoted cell attachment. The tube concentration and tube length both had significant influences on filament size and merging area. Printed groups with higher microtube concentration showed higher microtube density, with filament/nozzle size ratio, and printed/designed grid area ratio closer to 100%. In the in vitro experiments, microtubes were not only compatible with human umbilical vein endothelial cells but also provided microtopographical cues to promote cell proliferation and morphogenesis in three-dimensional space. In summary, the microtubes fabricated by our groups have the potential for the bioprinting of vascularized soft tissue scaffolds.  相似文献   

14.
In vivo imaging of embryonic vascular development using transgenic zebrafish   总被引:24,自引:0,他引:24  
In this study we describe a model system that allows continuous in vivo observation of the vertebrate embryonic vasculature. We find that the zebrafish fli1 promoter is able to drive expression of enhanced green fluorescent protein (EGFP) in all blood vessels throughout embryogenesis. We demonstrate the utility of vascular-specific transgenic zebrafish in conjunction with time-lapse multiphoton laser scanning microscopy by directly observing angiogenesis within the brain of developing embryos. Our images reveal that blood vessels undergoing active angiogenic growth display extensive filopodial activity and pathfinding behavior similar to that of neuronal growth cones. We further show, using the zebrafish mindbomb mutant as an example, that the expression of EGFP within developing blood vessels permits detailed analysis of vascular defects associated with genetic mutations. Thus, these transgenic lines allow detailed analysis of both wild type and mutant embryonic vasculature and, together with the ability to perform large scale forward-genetic screens in zebrafish, will facilitate identification of new mutants affecting vascular development.  相似文献   

15.
Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo‐spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel‐specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, suggesting that niche blood vessels regulate NSC differentiation at least in part by providing oxygen. Consistent herewith, hypoxia‐inducible factor (HIF)‐1α levels controlled the switch of NSC expansion to differentiation. Finally, we provide evidence that high glycolytic activity of NSCs is required to prevent their precocious differentiation in vivo. Thus, blood vessel function is required for efficient NSC differentiation in the developing cerebral cortex by providing oxygen and possibly regulating NSC metabolism.  相似文献   

16.
17.
The formation and perfusion of developing renal blood vessels (apart from glomeruli) are greatly understudied. As vasculature develops via angiogenesis (which is the branching off of major vessels) and vasculogenesis (de novo vessel formation), perfusion mapping techniques such as resin casts, in vivo ultrasound imaging, and micro-dissection have been limited in demonstrating the intimate relationships between these two processes and developing renal structures within the embryo. Here, we describe the procedure of in utero intra-cardiac ultrasound-guided FITC-labeled tomato lectin microinjections on mouse embryos to gauge the ontogeny of renal perfusion. Tomato lectin (TL) was perfused throughout the embryo and kidneys harvested. Tissues were co-stained for various kidney structures including: nephron progenitors, nephron structures, ureteric epithelium, and vasculature. Starting at E13.5 large caliber vessels were perfused, however peripheral vessels remained unperfused. By E15.5 and E17.5, small peripheral vessels as well as glomeruli started to become perfused. This experimental technique is critical for studying the role of vasculature and blood flow during embryonic development.  相似文献   

18.
The class VI intermediate filament protein nestin has been generally considered as a specific marker for neural precursor cells or developing muscles. In the prenatal developing rat central nervous system (CNS), we localized immunoreactivity for the nestin in blood vessels. Although the widespread nestin expression in cerebral blood vessels persisted in early postnatal periods, it was down-regulated in the adulthood. However, when the adult rat brains were subjected to procedures that trigger neovascularization, e.g. grafting fetal nervous tissue or C6 glioma, the abundant immunoreactivity was detected in all newly formed vessels and adjacent host vasculature. Our results demonstrate that nestin expression in endothelial cells lining cerebral vessels accompanies the process of angiogenesis.  相似文献   

19.
Vascular imaging is crucial in the clinical diagnosis and management of cerebrovascular diseases, such as brain arteriovenous malformations (BAVMs). Animal models are necessary for studying the etiopathology and potential therapies of cerebrovascular diseases. Imaging the vasculature in large animals is relatively easy. However, developing vessel imaging methods of murine brain disease models is desirable due to the cost and availability of genetically-modified mouse lines. Imaging the murine cerebral vascular tree is a challenge. In humans and larger animals, the gold standard for assessing the angioarchitecture at the macrovascular (conductance) level is x-ray catheter contrast-based angiography, a method not suited for small rodents. In this article, we present a method of cerebrovascular casting that produces a durable skeleton of the entire vascular bed, including arteries, veins, and capillaries that may be analyzed using many different modalities. Complete casting of the microvessels of the mouse cerebrovasculature can be difficult; however, these challenges are addressed in this step-by-step protocol. Through intracardial perfusion of the vascular casting material, all vessels of the body are casted. The brain can then be removed and clarified using the organic solvent methyl salicylate. Three dimensional imaging of the brain blood vessels can be visualized simply and inexpensively with any conventional brightfield microscope or dissecting microscope. The casted cerebrovasculature can also be imaged and quantified using micro-computed tomography (micro-CT)(1). In addition, after being imaged, the casted brain can be embedded in paraffin for histological analysis. The benefit of this vascular casting method as compared to other techniques is its broad adaptation to various analytic tools, including brightfield microscopic analysis, CT scanning due to the radiopaque characteristic of the material, as well as histological and immunohistochemical analysis. This efficient use of tissue can save animal usage and reduce costs. We have recently demonstrated application of this method to visualize the irregular blood vessels in a mouse model of adult BAVM at a microscopic level(2), and provide additional images of the malformed vessels imaged by micro-CT scan. Although this method has drawbacks and may not be ideal for all types of analyses, it is a simple, practical technique that can be easily learned and widely applied to vascular casting of blood vessels throughout the body.  相似文献   

20.
The neovascularization of tissues is accomplished by two distinct processes: de novo formation of blood vessels through the assembly of progenitor cells during early prenatal development (vasculogenesis), and expansion of a pre-existing vascular network by endothelial cell sprouting (angiogenesis), the main mechanism of blood vessel growth in postnatal life. Evidence exists that adult bone marrow (BM)-derived progenitor cells can contribute to the formation of new vessels by their incorporation into sites of active angiogenesis. Aim of this study was to investigate the in vitro self-organizing capacity of human BM mononuclear cells (BMMNC) to induce vascular morphogenesis in a three-dimensional (3D) matrix environment in the absence of pre-existing vessels. Whole BMMNC as well as the adherent and non-adherent fractions of BMMNC were embedded in fibrin gels and cultured for 3-4 weeks without additional growth factors. The expression of hematopoietic-, endothelial-, smooth muscle lineage, and stem cell markers was analyzed by immunohistochemistry and confocal laser-scanning microscopy. The culture of unselected BMMNC in 3D fibrin matrices led to the formation of cell clusters expressing the endothelial progenitor cell (EPC) markers CD133, CD34, vascular endothelial growth factor receptor (VEGFR)-2, and c-kit, with stellar shaped spreading of peripheral elongated cells forming tube-like structures with increasing complexity over time. Cluster formation was dependent on the presence of both adherent and non-adherent BMMNC without the requirement of external growth factors. Developed vascular structures expressed the endothelial markers CD34, VEGFR-2, CD31, von Willebrand Factor (vWF), and podocalyxin, showed basement-membrane-lined lumina containing CD45+ cells and were surrounded by alpha-smooth muscle actin (SMA) expressing mural cells. Our data demonstrate that adult human BM progenitor cells can induce a dynamic self organization process to create vascular structures within avascular 3D fibrin matrices suggesting a possible alternative mechanism of adult vascular development without involvement of pre-existing vascular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号