首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the combined effect of increased subatmospheric upper airway pressure and withdrawal of phasic volume feedback from the lung on genioglossus muscle activity, the response of this muscle to intermittent nasal airway occlusion was studied in 12 normal adult males during sleep. Nasal occlusion at end expiration was achieved by inflating balloon-tipped catheters located within the portals of a nose mask. No seal was placed over the mouth. During nose breathing in non-rapid-eye-movement (NREM) sleep, nasal airway occlusion resulted in multiple respiratory efforts before arousal. Mouth breathing was not initiated until arousal. Phasic inspiratory genioglossus activity was present in eight subjects during NREM sleep. In these subjects, comparison of peak genioglossus inspiratory activity on the first three occluded efforts to the value just before occlusion showed an increase of 4.7, 16.1, and 28.0%, respectively. The relative increases in peak genioglossus activity were very similar to respective increases in peak diaphragm activity. Arousal was associated with a large burst in genioglossus activity. During airway occlusion in rapid-eye-movement (REM) sleep, mouth breathing could occur without a change in sleep state. In general, genioglossus responses to airway occlusion in REM sleep were similar in pattern to those in NREM sleep. A relatively small reflex activation of upper airway muscles associated with a sudden increase in subatmospheric pressure in the potentially collapsible segment of the upper airway may help compromise upper airway patency during sleep.  相似文献   

2.
Six normal adults were studied 1) to compare respiratory-related posterior cricoarytenoid (PCA) muscle activity during wakefulness and sleep and 2) to determine the effect of upper airway occlusions during non-rapid-eye-movement (NREM) sleep on PCA activity. A new electromyographic technique was developed to implant hooked-wire electrodes into the PCA by using a nasopharyngoscope. A previously described technique was used to induce upper airway occlusions during NREM sleep (Kuna and Smickley, J. Appl. Physiol. 64: 347-353, 1988). The PCA exhibited phasic inspiratory activity during quiet breathing in wakefulness and sleep in all subjects. Discounting changes in tonic activity, peak amplitude of PCA inspiratory activity during stage 3-4 NREM sleep decreased to 77% of its value in wakefulness. Tonic activity throughout the respiratory cycle was present in all subjects during wakefulness but was absent during state 3-4 NREM sleep. In this sleep stage, PCA phasic activity abruptly terminated near the end of inspiration. During nasal airway occlusions in NREM sleep, PCA phasic activity did not increase significantly during the first or second occluded effort. The results, in combination with recent findings for vocal cord adductors in awake and sleeping adults, suggest that vocal cord position during quiet breathing in wakefulness is actively controlled by simultaneously acting antagonistic intrinsic laryngeal muscles. In contrast, the return of the vocal cords toward the midline during expiration in stage 3-4 NREM sleep appears to be a passive phenomenon.  相似文献   

3.
For some time it has been suggested that breathing movements are made "in utero" and recently measurements of tracheal pressure and lung liquid flow in chronic fetal preparations have led to the hypothesis that rapid changes in these parameters are the result of respiratory muscle activity. To test this hypothesis diaphragmatic electrical activity was measured in seven chronic unanesthetized fetal sheep preparations and correlated with lung liquid flow and tracheal pressure. Diaphragmatic activity led to a fall of tracheal pressure and movement of a small volume of lung liquid into the lung. After the activity ceased, tracheal pressure returned to normal and flow diminished to zero or was directed out of the lung. The breathing pattern was unassociated with the net movement of lung liquid out of the lung. A histogram of the interval between breaths revealed a changing pattern of activity throughout gestation. The pattern was significantly altered after premature delivery of one animal with a respiratory problem. These observations provide evidence that respiratory muscles are active "in utero" and that the pattern of activity changes throughout gestation.  相似文献   

4.
Receptors responding to transmural pressure, airflow, and contraction of laryngeal muscles have been previously identified in the larynx. To assess the relative contribution of these three types of receptors to the reflex changes in breathing pattern and upper airway patency, we studied diaphragmatic (DIA) and posterior cricoarytenoid muscle (PCA) activity in anesthetized dogs during spontaneous breathing and occluded efforts with and without bypassing the larynx. Inspiratory duration (TI) was longer, mean inspiratory slope (peak DIA/TI) was lower, and PCA activity was greater with upper airway occlusion than with tracheal occlusion (larynx bypassed). Bilateral section of the superior laryngeal nerves eliminated these differences. When respiratory airflow was diverted from the tracheostomy to the upper airway the only change attributable to laryngeal afferents was an increase in PCA activity. These results confirm the importance of the superior laryngeal nerves in the regulation of breathing pattern and upper airway patency and suggest a prevalent role for laryngeal negative pressure receptors.  相似文献   

5.
The sleeping state places unique demands on the ventilatory control system. The sleep-induced increase in airway resistance, the loss of consciousness, and the need to maintain the sleeping state without frequent arousals require the presence of complex compensatory mechanisms. The increase in upper airway resistance during sleep represents the major effect of sleep on ventilatory control. This occurs because of a loss of muscle activity, which narrows the airway and also makes it more susceptible to collapse in response to the intraluminal pressure generated by other inspiratory muscles. The magnitude and timing of the drive to upper airway vs. other inspiratory pump muscles determine the level of resistance and can lead to inspiratory flow limitation and complete upper airway occlusion. The fall in ventilation with this mechanical load is not prevented, as it is in the awake state, because of the absence of immediate compensatory responses during sleep. However, during sleep, compensatory mechanisms are activated that tend to return ventilation toward control levels if the load is maintained. Upper airway protective reflexes, intrinsic properties of the chest wall, muscle length-compensating reflexes, and most importantly chemoresponsiveness of both upper airway and inspiratory pump muscles are all present during sleep to minimize the adverse effect of loading on ventilation. In non-rapid-eye-movement sleep, the high mechanical impedance combined with incomplete load compensation causes an increase in arterial PCO2 and augmented respiratory muscle activity. Phasic rapid-eye-movement sleep, however, interferes further with effective load compensation, primarily by its selective inhibitory effects on the phasic activation of postural muscles of the chest wall. The level and pattern of ventilation during sleep in health and disease states represent a compromise toward the ideal goal, which is to achieve maximum load compensation and meet the demand for chemical homeostasis while maintaining sleep state.  相似文献   

6.
To test the hypothesis that occlusive apneas result from sleep-induced periodic breathing in association with some degree of upper airway compromise, periodic breathing was induced during non-rapid-eye-movement (NREM) sleep by administering hypoxic gas mixtures with and without applied external inspiratory resistance (9 cmH2O X l-1 X s) in five normal male volunteers. In addition to standard polysomnography for sleep staging and respiratory pattern monitoring, esophageal pressure, tidal volume (VT), and airflow were measured via an esophageal catheter and pneumotachograph, respectively, with the latter attached to a tight-fitting face mask, allowing calculation of total pulmonary system resistance (Rp). During stage I/II NREM sleep minimal period breathing was evident in two of the subjects; however, in four subjects during hypoxia and/or relief from hypoxia, with and without added resistance, pronounced periodic breathing developed with waxing and waning of VT, sometimes with apneic phases. Resistive loading without hypoxia did not cause periodicity. At the nadir of periodic changes in VT, Rp was usually at its highest and there was a significant linear relationship between Rp and 1/VT, indicating the development of obstructive hypopneas. In one subject without added resistance and in the same subject and in another during resistive loading, upper airway obstruction at the nadir of the periodic fluctuations in VT was observed. We conclude that periodic breathing resulting in periodic diminution of upper airway muscle activity is associated with increased upper airway resistance that predisposes upper airways to collapse.  相似文献   

7.
The functional development of two upper airway dilating muscles, the alae nasi and the genioglossus, has been studied in fetal sheep in utero from 112-140 days gestation. Before electrocortical differentiation phasic activity was present in both muscles for long periods, mostly when breathing movements were present. After 120 days gestation phasic genioglossal and alae nasi activity occurred only during periods of low voltage electrocortical activity. During high voltage episodes there was no phasic activity and tonic activity was not sustained. Although present during periods of breathing movements genioglossus activity was rarely synchronous with the diaphragm. The alae nasi showed both respiratory and non-respiratory related activity. Hypoxia abolished both alae nasi and genioglossus activity but whereas alae nasi rapidly developed an inspiratory rhythm during 5% CO2 administration this was not the case with the genioglossus and inspiratory activity was not always seen in the genioglossus even during 10% CO2 administration. It is concluded that there are fundamental differences between the control of genioglossus and alae nasi activity in the fetal sheep. The alae nasi behaves as an inspiratory muscle responding to hypoxia and hypercapnia as would be expected but the genioglossus shows no inspiratory activity during normal unstimulated fetal breathing. Thus the neural mechanisms for activation of inspiratory activity appear to be present late in gestation. However it is possible for the genioglossus to develop an inspiratory rhythm under conditions of much increased respiratory drive.  相似文献   

8.
Complex relationships exist among electromyograms (EMGs) of the upper airway muscles, respective changes in muscle length, and upper airway volume. To test the effects of preventing lung inflation on these relationships, recordings were made of EMGs and length changes of the geniohyoid (GH) and sternohyoid (SH) muscles as well as of tidal changes in upper airway volume in eight anesthetized cats. During resting breathing, tracheal airway occlusion tended to increase the inspiratory lengthening of GH and SH. In response to progressive hypercapnia, the GH eventually shortened during inspiration in all animals; the extent of muscle shortening was minimally augmented by airway occlusion despite substantial increases in EMGs. SH lengthened during inspiration in six of eight animals under hypercapnic conditions, and in these cats lengthening was greater during airway occlusion even though EMGs increased. Despite the above effects on SH and GH length, upper airway tidal volume was increased significantly by tracheal occlusion under hypercapnic conditions. These data suggest that the thoracic and upper airway muscle reflex effects of preventing lung inflation during inspiration act antagonistically on hyoid muscle length, but, because of the mechanical arrangement of the hyoid muscles relative to the airway and thorax, they act agonistically to augment tidal changes in upper airway volume. The augmentation of upper airway tidal volume may occur in part as a result of the effects of thoracic movements being passively transmitted through the hyoid muscles.  相似文献   

9.
We propose that a sleep-induced decrement in the activity of the tensor palatini (TP) muscle could induce airway narrowing in the area posterior to the soft palate and therefore lead to an increase in upper airway resistance in normal subjects. We investigated the TP to determine the influence of sleep on TP muscle activity and the relationship between changing TP activity and upper airway resistance over the entire night and during short sleep-awake transitions. Seven normal male subjects were studied on a single night with wire electrodes placed in both TP muscles. Sleep stage, inspiratory airflow, transpalatal pressure, and TP moving time average electromyogram (EMG) were continuously recorded. In addition, in two of the seven subjects the activity (EMG) of both the TP and the genioglossus muscle simultaneously was recorded throughout the night. Upper airway resistance increased progressively from wakefulness through the various non-rapid-eye-movement sleep stages, as has been previously described. The TP EMG did not commonly demonstrate phasic activity during wakefulness or sleep. However, the tonic EMG decreased progressively and significantly (P less than 0.05) from wakefulness through the non-rapid-eye-movement sleep stages [awake, 4.6 +/- 0.3 (SE) arbitrary units; stage 1, 2.6 +/- 0.3; stage 2, 1.7 +/- 0.5; stage 3/4, 1.5 +/- 0.8]. The mean correlation coefficient between TP EMG and upper airway resistance across all sleep states was (-0.46). This mean correlation improved over discrete sleep-awake transitions (-0.76). No sleep-induced decrement in the genioglossus activity was observed in the two subjects studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Fetal breathing movements (FBM) and lung liquid volume are known to affect lung development, but little is known about mechanisms controlling movement of liquid through the upper respiratory tract (URT). Therefore we measured resistances of the URT in 8 unanesthetized fetal sheep during late gestation while FBM were monitored from pressures in the lower trachea or from electromyogram of respiratory muscles. URT resistance to liquid flow toward the amniotic sac increased from 3.5 +/- 1.9 Torr X ml-1 X min during episodes of FBM to 21.1 +/- 5.7 Torr X ml-1 X min during apnea. Laryngeal resistance during apnea was greater (P less than 0.001) than supralaryngeal resistance in each of six fetuses in which URT resistance was partitioned. Fetal paralysis abolished the increase in laryngeal resistance to efflux that was previously related to the high-voltage electrocortical state and apnea. We were unable to quantify URT resistance to fluid movement toward the lungs because the larynx acted as a valve, permitting flow toward the lungs only in the presence of FBM. The supralaryngeal portion of the URT also apparently acts as a valve, normally preventing the entry of amniotic fluid into the pharynx. These findings help to explain our earlier observations that efflux of liquid from the fetal lungs is greater during episodes of FBM than during apnea.  相似文献   

11.
Extra-dural or cerebroventricular intracranial pressure was measured in 7 unanaesthetized fetal sheep (123-137 days gestation). Basal intracranial pressure was 6.7 +/- 1.7 mmHg, but there were many transient increases of pressure in association with spontaneous changes of amniotic pressure, fetal intrathoracic pressure, and particularly when the fetal nuchal muscles were active. These spontaneous increases of intracranial pressure were often associated with cessation of breathing movements and change of the electrocorticogram from low to high voltage activity. To test whether increased intracranial pressure influenced breathing movements and electrocortical activity, intracranial pressure was raised either by occluding the superior vena cava for 1 min with an implanted extravascular cuff, or by extra-dural injection of 0.3-1.0 ml of 0.9% NaCl. Increasing the intracranial pressure 5-15 mmHg by either method during low voltage electrocortical activity caused cessation of breathing movements, electro-ocular activity, and change of the electrocorticogram from low to high voltage in a significant proportion of trials. We propose that natural fluctuations of intracranial pressure caused by compression of the fetal body or skull, by body movements or by uterine activity, may cause changes in electrocortical activity and breathing movements.  相似文献   

12.
The inability to see the fetus makes the assessment of fetal behavior difficult. To circumvent this problem we implanted a Plexiglas window in the left flank of the ewe. Fetuses were instrumented for measurements of sleep, breathing, and swallowing. Ten fetal sheep were studied on 32 occasions. Six fetuses were delivered through the window at term, and postnatal behavior was compared with intrauterine behavior. Fetuses observed during resting conditions alternated between periods of quiet sleep [high-voltage electrocortical activity (ECoG)] and active or rapid-eye-movement sleep (low-voltage ECoG). In quiet sleep, movements were absent except for periodic generalized electromyographic discharges. Eye and breathing movements were rare or absent. Swallowing was also absent. In active sleep, movements were increased with powerful breathing and swallowing activity. Fetal wakefulness defined by open eyes and purposeful movements of the head was never seen in utero but was clearly observed after delivery. We conclude that fetal wakefulness as defined postnatally was not able to be demonstrated in utero.  相似文献   

13.
Sleep-related reduction in geniohyoid muscular support may lead to increased airway resistance in normal subjects. To test this hypothesis, we studied seven normal men throughout a single night of sleep. We recorded inspiratory supraglottic airway resistance, geniohyoid muscle electromyographic (EMGgh) activity, sleep staging, and ventilatory parameters in these subjects during supine nasal breathing. Mean inspiratory upper airway resistance was significantly (P less than 0.01) increased in these subjects during all stages of sleep compared with wakefulness, reaching highest levels during non-rapid-eye-movement (NREM) sleep [awake 2.5 +/- 0.6 (SE) cmH2O.l-1.s, stage 2 NREM sleep 24.1 +/- 11.1, stage 3/4 NREM sleep 30.2 +/- 12.3, rapid-eye-movement (REM) sleep 13.0 +/- 6.7]. Breath-by-breath linear correlation analyses of upper airway resistance and time-averaged EMGgh amplitude demonstrated a significant (P less than 0.05) negative correlation (r = -0.44 to -0.55) between these parameters in five of seven subjects when data from all states (wakefulness and sleep) were combined. However, we found no clear relationship between normalized upper airway resistance and EMGgh activity during individual states (wakefulness, stage 2 NREM sleep, stage 3/4 NREM sleep, and REM sleep) when data from all subjects were combined. The timing of EMGgh onset relative to the onset of inspiratory airflow did not change significantly during wakefulness, NREM sleep, and REM sleep. Inspiratory augmentation of geniohyoid activity generally preceded the start of inspiratory airflow. The time from onset of inspiratory airflow to peak inspiratory EMGgh activity was significantly increased during sleep compared with wakefulness (awake 0.81 +/- 0.04 s, NREM sleep 1.01 +/- 0.04, REM sleep 1.04 +/- 0.05; P less than 0.05). These data indicate that sleep-related changes in geniohyoid muscle activity may influence upper airway resistance in some subjects. However, the relationship between geniohyoid muscle activity and upper airway resistance was complex and varied among subjects, suggesting that other factors must also be considered to explain sleep influences on upper airway patency.  相似文献   

14.
To determine upper airway and respiratory muscle responses to nasal continuous negative airway pressure (CNAP), we quantitated the changes in diaphragmatic and genioglossal electromyographic activity, inspiratory duration, tidal volume, minute ventilation, and end-expiratory lung volume (EEL) during CNAP in six normal subjects during wakefulness and five during sleep. During wakefulness, CNAP resulted in immediate increases in electromyographic diaphragmatic and genioglossal muscle activity, and inspiratory duration, preserved or increased tidal volume and minute ventilation, and decreased EEL. During non-rapid-eye-movement and rapid-eye-movement sleep, CNAP was associated with no immediate muscle or timing responses, incomplete or complete upper airway occlusion, and decreased EEL. Progressive diaphragmatic and genioglossal responses were observed during non-rapid-eye-movement sleep in association with arterial O2 desaturation, but airway patency was not reestablished until further increases occurred with arousal. These results indicate that normal subjects, while awake, can fully compensate for CNAP by increasing respiratory and upper airway muscle activities but are unable to do so during sleep in the absence of arousal. This sleep-induced failure of load compensation predisposes the airways to collapse under conditions which threaten airway patency during sleep. The abrupt electromyogram responses seen during wakefulness and arousal are indicative of the importance of state effects, whereas the gradual increases seen during sleep probably reflect responses to changing blood gas composition.  相似文献   

15.
We examined the effect of sleep state on the response of genioglossus muscle (EMGgg) activity to total airway occlusion applied at 1) nasal (N) airway [and thus exposing the upper airway (UAW) to pressure changes] and 2) tracheal (T) airway (thus excluding UAW from pressure changes). A total of 233 tests were performed during wakefulness (W), 98 tests in slow-wave sleep (SWS), and 72 tests in rapid-eye-movement (REM) sleep. Prolongation of inspiratory time (TI) of the first occluded effort occurred in all tests irrespective of behavioral state, with the greatest increase seen in awake N tests. Nasal tests augmented EMGgg activity in the first occluded breath and produced a linear increase in EMGgg during occlusion. The EMGgg activity at any given time during nasal occlusion in SWS was less than that recorded during W tests. There was a marked reduction in EMGgg response to N occlusion during REM sleep. The EMGgg activity during awake T tests was significantly less than that of N tests at any given time during occlusion. There was no relationship between the level of EMGgg activity and asphyxia in T tests performed during SWS and REM sleep. Nasal tests decreased the force generated by the inspiratory pump muscles and the central drive to breathing compared with T tests. These results confirm the important role of the UAW in regulating breathing pattern and indicate that both immediate and progressive load-compensating responses during nasal occlusion are influenced by information arising from the UAW.  相似文献   

16.
We studied the effects of inhibitors of prostaglandin synthesis on fetal breathing movements on 17 occasions in 11 lambs (gestational age 125-141 days). We gave 12 h infusions of sodium mechlofenamate (8.6-22.2 mg.kg-1) in 13 studies and indomethacin (21.8-38.8 mg.kg-1) in four studies. Results were similar with both agents and did not correlate with drug dosage. There were no changes in fetal arterial blood pressure, pH or blood gas tensions. We assessed fetal breathing movements by measurements of tracheal pressure for a control period of 224 h prior to and 208 h during the infusion of inhibitors of prostaglandin synthesis; their administration caused a marked stimulation of fetal breathing movements judged from the following four variables: (1) incidence of fetal breathing movements increased from 38.4 to 69.2% of the time (P < 0.001); (2) average amplitude of change in tracheal pressure during fetal breathing movements increased from 4.1 to 6.0 torr (P < 0.01); (3) maximal amplitude of change in tracheal pressure during fetal breathing movements increased from 8.8 to 13.4 torr (P < 0.01); and (4) the duration of the longest continuous episode of fetal breathing movements increased from 37 to 229 min (P < 0.05). Two fetuses had electrocorticogram (ECoG) recordings. In control periods, fetal breathing movements occurred only during low voltage, high frequency ECoG activity; however, during infusions of inhibitors of prostaglandin synthesis, fetal breathing movements occurred also during high voltage, low frequency ECoG activity. We conclude that inhibitors of prostaglandin synthesis stimulate fetal breathing movement in fetal sheep. These results suggest that a component of the prostaglandin system is a factor which inhibits breathing movements during fetal life.  相似文献   

17.
Expiratory muscle activity has been shown to occur in awake humans during lung inflation; however, whether this activity is dependent on consciousness is unclear. Therefore we measured abdominal muscle electromyograms (intramuscular electrodes) in 13 subjects studied in the supine position during wakefulness and non-rapid-eye-movement sleep. Lung inflation was produced by nasal continuous positive airway pressure (CPAP). CPAP at 10-15 cmH2O produced phasic expiratory activity in two subjects during wakefulness but produced no activity in any subject during sleep. During sleep, CPAP to 15 cmH2O increased lung volume by 1,260 +/- 215 (SE) ml, but there was no change in minute ventilation. The ventilatory threshold at which phasic abdominal muscle activity was first recorded during hypercapnia was 10.3 +/- 1.1 l/min while awake and 13.8 +/- 1 l/min while asleep (P less than 0.05). Higher lung volumes reduced the threshold for abdominal muscle recruitment during hypercapnia. We conclude that lung inflation alone over the range that we studied does not alter ventilation or produce recruitment of the abdominal muscles in sleeping humans. The internal oblique and transversus abdominis are activated at a lower ventilatory threshold during hypercapnia, and this activation is influenced by state and lung volume.  相似文献   

18.
We investigated the mechanisms of airway protection and bolus transport during retching and vomiting by recording responses of the pharyngeal, laryngeal, and hyoid muscles and comparing them with responses during swallowing and responses of the gastrointestinal tract. Five dogs were chronically instrumented with electrodes on the striated muscles and strain gauges on smooth muscles. Retching and vomiting were stimulated by apomorphine (5-10 ug/kg iv). During retching, the hyoid and thyroid descending and laryngeal abductor muscles were activated; between retches, the hyoid, thyroid, and pharyngeal elevating, and laryngeal adductor muscles were activated. Vomiting always occurred during the ascending phase of retching and consisted of three sequential phases of hyoid and pharyngeal muscle activation culminating in simultaneous activation of all recorded elevating and descending laryngeal, hyoid, and pharyngeal muscles. Retrograde activation of esophagus and pharyngeal muscles occurred during the later phases, and laryngeal adductor was maximally activated in all phases of the vomit. During swallowing, the laryngeal adductor activation was followed immediately by brief activation of the laryngeal abductor. We concluded that retching functions to mix gastric contents with refluxed intestinal secretions and to impart an orad momentum to the bolus before vomiting. During retches, the airway is protected by glottal closure, and between retches, it is protected by ascent of the larynx and closure of the upper esophageal sphincter. The airway is protected by maximum glottal closure during vomiting. During swallowing, the airway is protected by laryngeal elevation and glottal closure followed by brief opening of the glottis, which may release subglottal pressure expelling material from the laryngeal vestibule.  相似文献   

19.
Effects of upper airway anesthesia on pharyngeal patency during sleep   总被引:2,自引:0,他引:2  
Pharyngeal patency depends, in part, on the tone and inspiratory activation of pharyngeal dilator muscles. To evaluate the influence of upper airway sensory feedback on pharyngeal muscle tone and thus pharyngeal patency, we measured pharyngeal airflow resistance and breathing pattern in 15 normal, supine subjects before and after topical lidocaine anesthesia of the pharynx and glottis. Studies were conducted during sleep and during quiet, relaxed wakefulness before sleep onset. Maximal flow-volume loops were also measured before and after anesthesia. During sleep, pharyngeal resistance at peak inspiratory flow increased by 63% after topical anesthesia (P less than 0.01). Resistance during expiration increased by 40% (P less than 0.01). Similar changes were observed during quiet wakefulness. However, upper airway anesthesia did not affect breathing pattern during sleep and did not alter awake flow-volume loops. These results indicate that pharyngeal patency during sleep is compromised when the upper airway is anesthetized and suggest that upper airway reflexes, which promote pharyngeal patency, exist in humans.  相似文献   

20.
Role of upper airway in ventilatory control in awake and sleeping dogs   总被引:1,自引:0,他引:1  
We examined the role of the upper airway in the regulation of the pattern of breathing in six adult dogs during wakefulness and sleep. The dogs breathed through a fenestrated endotracheal tube inserted through a tracheostomy. The tube was modified to allow airflow to be directed either through the nose or through the tracheostomy. When airflow was diverted from nose to tracheostomy there was an abrupt increase in the rate of expiratory airflow, resulting in prolongation of the end-expiratory pause but no change in overall expiratory duration or respiratory frequency. Furthermore, electromyogram recordings from implanted diaphragmatic and laryngeal muscle electrodes did not show any changes that could be interpreted as an attempt to delay expiratory airflow or increase end-expiratory lung volume. The effects of switching from nose to tracheostomy breathing could be reversed by adding a resistance to the endotracheal tube so as to approximate upper airway resistance. The findings indicate that under normal conditions in the adult dog upper airway receptors play little role in regulation of respiratory pattern and that the upper airway exerts little influence on the maintenance of end-expiratory lung volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号