首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
A factorial experiment was designed to examine the effect on compensatory growth (CG) of Nile tilapia Oreochromis niloticus fed diets containing different protein and lipid levels under normal and temporally restricted feeding regimes. Four diets were formulated to contain either 30% or 36% crude protein, and 5% or 11% crude lipid. Triplicate replicates of each treatment were assigned to 24 150‐L tanks (20 fish/tank density). Fish (mean initial weight ± SD = 8.79 ± 0.34 g) were then fed either the normal feeding regime (thrice daily to apparent satiation) or the restricted regime (1 day feed deprivation followed by 3 days of feeding to apparent satiation) over a 44‐days study period. Fish receiving a diet under the restricted regime achieved weight gains (WG) comparable to fish consuming the diet containing 30% protein and 5% lipids under the normal feeding regime. Fish maintained on the restricted feeding regime exhibited reduced feed intake (FI), WG, feed efficiency ratio (FE), protein efficiency rate (PER) and hepatosomatic index versus fish on the normal feeding regime, except WG in fish fed the diet with 30% protein and 5% lipids. However, the resultant FI (85%~94%) was higher than the excepted 75% intake when fish were subjected to the restricted regime. Feeding 11% lipid diets led to improved FI, WG, FE, and PER compared to feeding the 5% lipid diets. Increased FI, WG, and FE, but reduced PER were observed in fish fed with 36% protein versus fish fed 30% protein. Fish receiving the 36% protein diets had lower whole‐body moisture and ash contents, but elevated whole‐body protein and lipid contents compared to those receiving the 30% protein diets. Whole‐body moisture contents were lower, but whole‐body protein, lipid and ash contents were higher in fish fed 11% lipid diets than in fish fed 5% lipid diets. There was an increase in whole‐body moisture content, but a decrease in protein and lipid content in response to the restricted feeding regime. Ash content was not affected by the feeding regime. The present study shows that Nile tilapia fed diets subjected to a restricted feeding regime exhibited growth comparable to those fed the diet at 30% protein and 5% lipid levels under a normal feeding regime. This positive effect was more pronounced in diets at a high protein level or in a combination of high protein and lipid levels.  相似文献   

2.
为了探究中华鳖(Pelodiscus sinensis)幼体的补偿生长能力,我们对中华鳖幼鳖(平均湿重9.56g)进行如下6种处理:饥饿0(对照)、1、2、3、4周,或者食物限制4周,即只投喂体湿重百分之一的食物;然后对各组进行饱食处理直到10周的实验结束为止。结果发现在饱食期的第一周各饥饿处理组的特殊生长率均显著高于对照组(P〈0.05),但是终体重均没有赶上对照组。当饥饿或食物限制结束时,脂肪含量随着饥饿期的延长而降低,灰分和水分则表现出相反的变化趋势:脂肪含量显著低于对照(P〈0.05),而灰分和水分则显著高于对照(P〈0.05)。蛋白含量则没有显著变化(P〉0.05)。实验结束时,除了灰分外(P〈0.05),其他个体组成指标均恢复到对照组的水平。以上结果表明中华鳖幼体在饥饿胁迫下首先利用脂肪作为主要能源以维持生存,以及在该研究条件下完全的食物剥夺可以诱发其部分补偿生长反应.而部分食物剥夺则不能诱发此反应。  相似文献   

3.
The effect of starvation and subsequent re‐feeding to satiation on compensatory growth performance, insulin and blood serum values were investigated in juvenile Persian sturgeon (Acipencer persicus) with an average weight 108.04 ± 0.28 g (mean ± SEM) and in the same rearing condition over an 8‐week period. Sturgeons were allocated to one of five feeding treatments: controls (C, continuous feeding), W1 (1 week starvation), W2 (2 weeks starvation), W3 (3 weeks starvation) and W4 (4 weeks starvation), followed by a single 4 weeks of re‐feeding to satiation. Changes in growth performance and blood serum indices were examined at the end of weeks 4 and 8. Body weight, specific growth rate (SGR), condition factor (CF) and weight gain were determined to have significantly decreased during starvation. Fish starved for 1 week reached the same weight as the control fish after re‐feeding for 4 weeks, indicating that complete compensatory growth occurred. Although the specific growth rate in W2, W3 and W4 fish was greater than that in the control fish after re‐feeding, W2, W3 and W4 fish did not reach the same body weight as control fish at the end of re‐feeding period, and showed partial compensation only. Blood plasma, glucose and insulin concentrations did not change significantly during starvation and re‐feeding (P > 0.05). This suggests that sturgeon are able to maintain glycaemia during starvation, probably due to their non‐carbohydrate dietary source. Plasma total lipid and triglyceride levels increased in starvation treatments, whereas the increases were significant only in W3 treatment (P < 0.05). After a 4‐week re‐feeding period, their levels decreased in comparison to the starvation periods. Increases in plasma total lipid and triglyceride levels appear to be due to their roles as preferred nutrients for mobilization in Persian sturgeon and the magnitude and duration of compensatory growth depended on the length of food deprivation.  相似文献   

4.
王岩 《应用生态学报》2003,14(2):237-240
将72尾杂交罗非鱼分别养在12个水槽内,每个水槽内养6尾大小不同的鱼(A、B、C、D、E、F),其中鱼A的初始体重为62.69±1.46g,B为56.48±1.30g,C为50.75±1.19g,D为35.56±1.18g,E为31.05±0.88g,F为27。35±0.95g(平均值±标准误).在4周实验中,实验鱼分别被停食或每天按体重1.5%、3.0%和饱食水平投喂.鱼的特定生长率(SGR)和食物效率(FE)先随食物水平增加而增加,当食物水平超过鱼体重的3.0%后,继续增加投喂量,SGR不再升高而FE明显下降.按体重1.5%投喂的鱼SGR和终体重个体间变异较大.对鱼A而言,食物水平超过体重1.5%后对其SGR无显著影响,但对鱼F而言,食物水平对SGR影响较大.结果表明,杂交罗非鱼的生长和个体生长分化与食物条件和初始体重有关,当食物水平超过体重的3.0%后,鱼的SGR较高,个体生长分化相对较轻.  相似文献   

5.
To investigate the nature of compenstory growth in fish, an 8 week study at 28°C was performed on juvenile gibel carp Carassius auratus gibelio weighing 6·6 g. Fish were starved for 0 (control), 1 (S1) or 2 (S2) weeks and then re-fed to satiation for 5 weeks. Weekly changes in weight gain, feed intake and body composition were monitored during re-feeding. No significant difference was found in final body weight between the three groups, indicating complete compensation in the deprived fish. The deprived groups caught up in body weight with that of the control after 2 weeks of re-feeding. Body fat: lean body mass ratio was restored to the control level within 1 week of re-feeding. In the re-feeding period, weekly gains in body weight, protein, lipid, ash and energy in the S1 group were significantly higher than in the controls for 1 week. For the S2 group, weekly gains in body weight, lipid, ash and energy were higher than in the controls for 2 weeks, and gain in protein was higher than in the controls for 3 weeks, though gain in body energy became elevated again during the last 2 weeks of the experiment. Feed intake remained higher than the control level for 3 weeks in the S1 group and 4 weeks in the S2 group. Growth efficiency was not significantly different among the three groups in any of the weeks during re-feeding. Compensatory responses in growth and especially feed intake tended to last longer than the recovery of body composition.  相似文献   

6.
Alternating periods of food deprivation with those of unlimited provision of food depressed the growth of Arctic charr, Salvelinus alpinus , below that of controls. Fish that were deprived of food and then fed on alternate weeks (1:1) were larger than those that were exposed to periods of 1 5- or 3-week deprivation and feeding (1·5:1·5 or 3:3). On receiving excess food supplies following 24 weeks on the restricted feeding regimes the previously-restricted fish grew more rapidly than the controls. The greatest compensatory growth was displayed after the 3:3 regime, followed by the 1·5: 1·5 and then the 1:1 feeding regime. At the termination of the experiment there were no significant differences in body weight between fish fed according to the different regimes during the period that food restriction was imposed. Growth patterns of the immature males and females were similar, but mature males were significantly lighter than the immature fish by the end of the experiment. Both immature and maturing fish displayed a compensatory growth response on return to adequate feeding. Beginning food restriction in May did not influence the proportions of male fish ( c . 60%) which were mature in the autumn.  相似文献   

7.
The present trial tested the applicability of Jatropha curcas kernel meal (JKM) as a protein source in diets for Nile tilapia (Oreochromis niloticus) in terms of growth and body composition. Four diets were produced replacing 0% (Control), 50% (J50), 75% (J75) and 100% (J100) of fishmeal with JKM. In a fifth diet, 70% of fishmeal was replaced by JKM, and another 20% replaced by blood meal to minimize crystalline lysine addition. Body mass gain of fish fed the control diet was significantly higher than in all other treatments. However, specific growth rate (SGR) and feed conversion ratio (FCR) were not significantly different between diets J50, J75 and the control. Fish fed the control diet had a lower body protein content, but higher body fat and energy content than fish fed the JKM‐based diets. An adaptation of fish fed diets J50, J75 and J100 could also be observed, as these diets showed worse FCR‐values over most of the first three quarters of the experiment and equal (or in the case of J75, even significantly better) FCR‐values over the final 2 weeks. Despite slightly slower growth, JKM should be further included in the search of alternative plant‐feedstuffs in diets for tilapia, as the growth observed here for up to 75% replacement of fishmeal was very promising.  相似文献   

8.
The study aimed at evaluating the optimum dietary vitamin E requirements using DL‐α‐tocopheryl acetate in the juvenile eel, Anguilla japonica, as assessed by fish growth performance and fish body composition. Five semi‐purified experimental diets were formulated to contain 0 (TA1), 15 (TA17), 30 (TA32), 60 (TA62) and 120 (TA119 mg TA kg?1 diet on a dry matter (DM) basis in the form of DL‐α‐tocopheryl acetate (TA). After a 4‐week conditioning period, fish (15 ± 0.3 g) were randomly distributed into aquaria in groups of 20 at 25 ± 1.0°C (mean ± SD). One of the five diets was fed on a DM basis to fish in three randomly selected aquaria twice daily to satiation (approximately 3% of wet body weight per day at the beginning and 2% of wet body weight per day at the end of the feeding trial) for 12 weeks. At the end of the 12‐week feeding trial, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) were determined; these were significantly lower in control fish than in fish fed supplemented diets (P < 0.05). The values for fish fed TA17 were significantly higher than for fish fed TA1, TA62 or TA119 (P < 0.05). There were no significant differences in WG, FE or PER among fish that were fed TA17 and TA32, among those that were fed TA32 and TA62, and among those that were fed TA62 and TA119 (P > 0.05). There were also no significant differences in SGR among fish fed TA32, TA62 or TA119 (P > 0.05). A broken‐line regression analysis on the basis of WG, SGR, FE and PER showed that dietary vitamin E requirements of juvenile eels were 21.2, 21.6, 21.2 and 21.5 (mg kg?1 diet), respectively. These results indicate that the dietary vitamin E requirement could be <21.2 mg kg?1 but <21.6 mg kg?1 diet in juvenile eel, A. japonica, when DL‐α‐tocopheryl acetate is used as the dietary vitamin E source.  相似文献   

9.
C. Fu  §  D. Li  §  W. Hu  §  Y. Wang  § Z. Zhu  §† 《Journal of fish biology》2007,71(SB):174-185
Compensatory growth is a phase of accelerated growth apparent when favourable conditions are restored after a period of growth depression. To investigate if F2 common 'all-fish' growth hormone gene transgenic common carp ( Cyprinus carpio ) could mount compensatory growth, a 9 week study at 29° C was performed. The control group was fed to satiation twice a day throughout the experiment. The other two groups were deprived of feed for 1 or 2 weeks, respectively, and then fed to satiation during the re-feeding period. At the end of the experiment, the live masses of fish in the deprived groups were still significantly lower than those of the controls. During the re-feeding period, size-adjusted mean specific growth rates and mean feed intakes were significantly higher in the deprived fish than in the controls, indicating a partial compensatory growth response in these fish. No significant differences were found in food conversion efficiency between the deprived and control fish during re-feeding, suggesting that hyperphagia was the mechanism responsible for increased growth rates. The proximate composition of the deprived fish at the end of the experiment was similar to that of the control fish. This study is, to our knowledge, the first to report that fast-growing transgenic fish can achieve partial compensation of growth following starvation.  相似文献   

10.
To investigate the response to starvation, gibel carp Carassius auratus gibelio [12.5 ± 0.03 g (mean ± SE, n = 24)] were deprived of food at 25.8 ± 0.2°C (mean ± SE, n = 56) for 56 days. Body mass, proximate composition in whole body and muscle, and respiration were measured at 7‐day intervals. Body mass decreased with prolongation of deprivation, with a significant decline recorded after 7 days deprivation. Fish lost 22% of their fresh mass and 34% of dry mass after 56 days. Fish lost 38% of the body lipid over the first 7 days, and lost body lipid at a rate of 0–11% per week over the remaining 49 days. Body protein was lost at 1–5% per week throughout deprivation. Compared with the initial composition, body lipid concentration was lower and ash concentration higher on day 7. Water as a percentage of body mass was higher after 28 days, and protein concentration lower after 42 days, than at the start of deprivation. Muscle lipid and protein concentration was lower, and % water higher, after 7 days than at the start of deprivation, whereas muscle ash concentration was relatively constant during deprivation. After 56 days, fish lost body water by 18%, body lipid by 84%, body protein by 30%, and body energy by 45%. Oxygen consumption rate dropped from day 1 to day 3, increased from day 4 to day 14, gradually decreased from day 15 to day 35, and maintained a relatively constant level from day 36 to day 56. Results of the present experiment reveal that gibel carp utilize body lipid as a major energy source in the first 7 days of food deprivation, then turn to body protein as an energy fuel when lipid reserves are heavily depleted. Oxygen consumption is maintained at a relatively low and constant level when most lipid reserves are exhausted.  相似文献   

11.
Norris and USDA-103 strains of channel catfish Ictalurus punctatus were compared for growth rate and food conversion ratio under satiation feeding and restricted feeding (1% body weight day−1) regimes. At the start of the experiment Norris fish weighed 2·8 g, USDA-103 fish weighed 14·0 g. Therefore, a regression of the loge of specific growth rate against the loge of mean body size with an empirically derived fixed slope of -0·37 was used to compare growth rates. Under both feeding regimes the USDA-103 strain had faster specific growth rates and more efficient food conversion. In subsequent studies, voluntary food intake of size matched fish (60 g average) from these two strains was compared using a radiographic method. Fish were acclimatized to tank conditions for 3 weeks prior to voluntary food intake measurement. Half of the groups were deprived of food for 2 days prior to food intake measurement, while the remaining groups were fed 1% body weight day−1. The USDA-103 strain fish ate significantly more food and grew faster than the Norris strain fish. Previously fasted Norris fish subsequently ate more than their fed counterparts, whereas the fed USDA-103 fish consumed more food than the fasted USDA-103 group. When the USDA-103 strain fish were deprived of food for 4 , 2 or 0 days, all groups subsequently consumed between 4·5 and 5·0% of body weight in one meal. The USDA-103 fish, unlike the Norris fish were not stimulated to consume more after short-duration fasting. Taken together, these results suggest that there are genetic differences in growth, food conversion ratio and regulation of food intake between Norris and USDA-103 strains.  相似文献   

12.
Juvenile Arctic charr, Salvelinus alpinus , subjected to either food deprivation or restricted feeding showed reductions in relative sizes of both liver and viscera. With food deprivation, percentage lipid decreased and percentage water increased in the eviscerated carcass, which is in agreement with findings for several other fish species. Following transfer from a restricted to a satiation feeding regime, the relative sizes of both liver and viscera increased to levels exceeding those of fish fed continuously to satiation. At the end of the experiment the percentage liver lipid content of restricted-satiation fed fish was higher than in fish fed to satiation. These differences in energy deposition patterns were, however, not sufficiently large to produce marked differences at the whole animal level, since whole body lipid energy: protein energy ratios and energy utilization efficiencies were similar for restricted-satiation and satiation fed fish.  相似文献   

13.
During the early spring four groups of sub-adult Pleuronectes asper were fasted for either 0, 2, 4 or 6 weeks at the beginning of a 12-week experiment, then fed to satiation to examine their ability to compensate with faster growth after food deprivation. All fish increased their stored energy reserves markedly and at the end of the experiment all four groups had similar body energy content (J g−1), length gains and dry weight to wet weight ratios. The groups of yellowfin sole fed continuously or fasted for 2 weeks gained the most weight, 25 and 24% respectively. Fishes fasted either 4 or 6 weeks exhibited significantly lower weight gains of 16 and 15% respectively over the 12-week experiment. Because of this disparity in weight gain the total body energy content of the continuously fed fish and those fasted for only 2 weeks increased by approximately 60 vs 46% or 35% for sole fasted for 4 or 6 weeks.
The experiment showed P. asper had a limited capacity for compensatory growth. When food was scarce yellowfin sole allocated energy preferentially to growth in length instead of weight. These findings may account for some of the interannual differences in mean length and weight at age for yellowfin sole from the Bering Sea where variations in extent and duration of ice cover and the boreal bottom water delimit the growing season.  相似文献   

14.
The aim of this study was to investigate compensatory growth in juvenile Rutilus caspicus during starvation and re‐feeding periods. The results confirmed the existence of compensatory growth in R. caspicus which depended on the duration of food deprivation. Complete compensatory growth occurred in the fish that were food deprived for at least 3 weeks. Starvation and re‐feeding had no significant effect on the digestive somatic index and intestinal surface areas in the fish that were food deprived for 1 week, while they showed a significant decrease and increase, during starvation and re‐feeding in the fish that were food deprived for 2 and 3 weeks. This knowledge may have application in aquaculture, as appropriate exploitation of compensatory growth can give increased growth rate and feeding efficiency.  相似文献   

15.
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus , from sympatric populations, were subjected to four cycles of 1 week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum . The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory. During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology.  相似文献   

16.
Protein, lipid, water and caloric contents of immature rainbow trout, relative to size of whole fish, growing at different rates were examined by use of allometric analysis (y = axb, Huxley, 1932). Fish grew at different rates as a result of differences in ration size (satiation, or 4–5% of dry body weight), temperature (7 and 12°C) and bGH (bovine growth hormone) administration. In fingerlings, protein, lipid and caloric contents tended to increase (v. body weight) as a percentage of body composition, whereas above fingerling size, protein decreased while lipid and caloric contents still increased. These trends occurred regardless of growth rate differences. The correlations between protein, lipid, caloric contents and body weight were high so reliable estimates of body components can be made from body weight for all experimental treatments. At satiation rations (7 and 12°C), there were no significant differences in protein content, but lipid and caloric contents were significantly higher in control fish. At low rations, protein and caloric contents were lower than those at satiation rations and lipid was lower than in the control group. On a dry weight basis, in uninjected fish at 12°C, ration size did not influence the percentage composition (protein and lipid) but the low ration group had lower energy values per unit of body dry weight. At low temperature (7°C satiation), fish had lower lipid and higher protein content (dry weight basis) than their controls (12°C satiation), thereby resembling bGH injected fish at satiation rations. Values of caloric content estimated from protein and lipid values by use of standard conversion factors differed sufficiently from caloric values directly determined by bomb calorimetry to suggest that caloric values of lipids may change during growth. The increase in body caloric content during growth apparently results mainly from an increase in the percentage of lipid. The similarity of body composition between different growth rate groups implied a tendency for conservation of relative proportions of components such that body composition can be approximated from body weight. Equations were also given to describe the relationship between water content and body constituents, and the relationship between condition factor (K) and both the body dry weight and lipid content.  相似文献   

17.
A 30‐day growth trial was conducted to investigate the individual variations in feeding rate, growth rate, spontaneous activity, and their possible interrelationships in hybrid tilapia (Oreochromis niloticus × O. aureus) reared individually at feeding frequencies of one and two meals daily. Results show that the feeding rate in energy (FRe), specific growth rate in energy (SGRe), and food conversion efficiency (FCE) of fish fed twice a day were significantly higher than that of fish fed only once. However, no significant differences in distance or in time spent swimming were observed between the groups. SGRe was positively correlated with FRe in fish fed only once daily, and SGRe was positively correlated with food conversion efficiency in energy (FCEe) between the two groups. SGRe was only inversely correlated with the distance that fish swam when fed once daily. The results suggest that the individual growth differences of hybrid tilapia could be attributed mainly to variations in FRe, and that the energy costs of spontaneous activity play an important role in the differences at feeding frequency of one meal a day. However, at feeding frequencies of two meals a day, individual growth differences in fish may be caused by variations in FCEe, and energy costs of spontaneous activity have only marginal effects on the differences.  相似文献   

18.
The objective of this study was to evaluate the feeding rate of the great sturgeon (Huso huso) young of the year (YOY) and to investigate the effects of different feeding rates in maintaining the weight of fish during short periods of winter starvation. Six feeding rates of 0.2, 0.4, 0.6, 0.8, 1.0% body weight (BW) day?1 and feeding to satiation were considered for the first experiment. Each feeding rate was randomly assigned to three replicate tanks, with continuous feeding throughout a 5‐week winter period of water temperatures below 10°C. Fifteen fish were held in each of 18 tanks with an average initial body weight of 219.6 ± 6.9 g. After 5 weeks of feeding, the best performance was observed in fish fed 1% BW day?1, but negative growth was observed in fish fed 0.2% BW day?1. In the second experiment, fish were deprived of feed for 3 weeks at winter temperatures. Weights and condition factors of all fish decreased during starvation, while the differences in mean weight before and after the starvation period were not significant in fish fed a level of 0.2% BW day?1 and those fish fed to satiation. No mortality was recorded in either experiment. Results of this study indicate that a feeding rate of 1% BW day?1 would be sufficient for commercial fish farming of YOY of this species to maintain them over winter. Also, to maintain fish weights and prevent weight loss in overwintering ponds, a feeding rate of around 0.3% BW day?1 seems appropriate for hatcheries.  相似文献   

19.
Studies of fish growth response to changes in dietary protein and energy content are often conducted with fish fed to apparent satiation or at fixed percentages of their body mass. Such designs result in simultaneous changes in protein and non-protein energy intake, thereby failing to distinguish their separate effects on nutrient partitioning and growth. The present study was designed to address this limitation and test the existence of distinct protein- and non-protein energy-dependent growth phases in Nile tilapia (Oreochromis niloticus). All-male Nile tilapia (63 g, SD = 1.3) were subjected to an 8 × 2 factorial design consisting of eight levels of digestible protein (DP) intake (0.44–1.25 g/day) and two levels of non-protein digestible energy (NPDE) intake (16.0 and 22.4 kJ/day). Fish (n = 960) were housed in 60-litre tanks with two replicates per treatment and hand-fed twice a day for 42 days. Nutrient balances were calculated from changes in body mass, analysed body composition and digestible nutrient intake. Linear regression models were compared to linear-plateau regression models to determine whether protein gain followed distinct protein- and non-protein energy-dependent phases or not. Body mass gain increased linearly with increasing DP intake and was significantly higher (2.6 vs 2.3 g/d, P < 0.05) in fish receiving a high NPDE intake. This increase mainly reflected a higher mean fat gain (0.29 vs 0.20 g/d) rather than a higher protein gain (0.42 vs 0.39 g/d) in fish fed a high vs low level of NPDE intake. The comparison of linear and linear-plateau models did not give clear support for the presence of distinct protein and non-protein energy-dependent phases in protein gain. These results indicate that non-protein energy intake has a modest protein-sparing potential, and that protein gain is simultaneously limited by protein and energy intake in Nile tilapia.  相似文献   

20.
The capacity of sub‐yearling Siberian sturgeon (Acipenser baerii Brandt, 1869) (19.7 ± 0.8 g) to show compensatory growth was assessed for a 40‐day period for the effects of short‐term starvation and refeeding on growth, feeding performance and body composition. After acclimation, 25 experimental fish were randomly distributed among twelve 500‐L cylindrical fiberglass tanks with a flow‐through system. The fish were subjected to four different feeding regimes: control, which was fed four times daily to apparent satiation; T1: four periods of 2 days starvation alternating with 8 days re‐feeding; T2: two periods of 4 days starvation alternating with 16 days refeeding; T3: an 8 days starvation period followed by 32 days refeeding. At the end of the experiment, the deprived fish attained body weights comparable to those attained by the control fish. There were no differences in growth and feeding performances between the deprived and the control fish. Total protein and lipid contents of the control fish were significantly higher than that of T1 and T2 fish at the end of the experiment (P < 0.05). A significant difference in the energy content was observed between T2 and the control. Siberian sturgeon exhibited complete compensation, indicating a high ability of the deprived fish to grow sufficiently to fully compensate for weight loss during starvation. The results suggested that the feeding schedule involving starvation–refeeding cycles could be a promising feed management option for the culture of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号