首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Catalytic and spectroscopic properties of alcohol dehydrogenase from horse liver, incorporated in reversed micellar media, have been studied. Two different reversed micellar systems have been used, one containing an anionic [sodium bis(2-ethylhexyl)sulfosuccinate, AOT], the other containing a cationic (cetyltrimethylammonium bromide, CTAB) surfactant. With 1-hexanol as substrate the turnover number of the enzyme in AOT-reversed micelles is strongly dependent on the water content of the system. At low wo ([H2O]/[surfactant]) (wo less than 20) no enzymatic activity can be detected whereas at high wo (wo = 40) the turnover is only slightly lower than in aqueous solution. In CTAB-reversed micelles the dependence of the turnover number on wo is much less. The enzymatic activity is in this case significantly lower than in aqueous solution and increases only slightly with an increasing water content of the reversed micelles. Possible interactions of the protein with the surfactant interfaces in the reversed micellar media were studied via circular dichroism and fluorescence measurements. From the circular dichroism of the protein backbone it is observed that the protein secondary structure is not significantly affected upon incorporation in the reversed micelles since the far-ultraviolet spectrum is not altered. Results from time-resolved fluorescence anisotropy experiments indicate that, especially in AOT-reversed micelles, interactions between the protein and the surfactant interface are largely electrostatic in nature, as evident from the dependence on the pH of the buffer used. In CTAB-reversed micellar solutions such interactions appear to be much less pronounced than in AOT.  相似文献   

2.
3.
4.
Polymorphism of horse liver alcohol dehydrogenase   总被引:1,自引:0,他引:1  
The properties of the most cathodal component of horse liver alcohol dehydrogenase (isozyme SS) have been found to vary. The variability is dependent on the livers from which the enzyme is isolated rather than on the purification procedure. Two distinct preparations, differing in catalytic properties, have been obtained and named S-type and A-type preparations. The preparations can be distinguished from each other by the ratio of activity with acetaldehyde to activity with the steroidal ketone 5β-dihydrotestosterone. This ratio is about one for the S-type and twenty for the A-type preparations.  相似文献   

5.
6.
7.
Horse-liver alcohol dehydrogenase has been dissociated and denatured by 6 M guanidinium hydrochloride. Removal of the denaturant under optimum conditions of the solvent leads to partial reactivation. The concentrations of the enzyme, as well as the coenzyme (NAD+), and Zn2+, affect the reactivation significantly, since high concentrations promote the formation of inactive aggregation products. Analyzing the kinetics of reactivation and reassociation, conditions far from equilibrium of dissociation-association provide maximum yields (approximately 70%). The sigmoidal kinetic traces suggest a superposition of first-order transconformation and second-order association reactions; the latter are corroborated by the concentration dependence of the reactivation reaction. The coenzyme, NAD+, has no influence on the kinetics of reactivation. Addition of Zn2+ leads to a significant decrease of the rate and yield of reactivation. The process of renaturation, as reflected by the regain of native fluorescence shows complex kinetics: rapid relaxations are followed by slower first-order and second-order processes which parallel reactivation.  相似文献   

8.
9.
A J Sytkowski  B L Vallee 《Biochemistry》1978,17(14):2850-2857
The preparation of metal hybrid species of horse liver alcohol dehydrogenase is made possible by the development of carefully delineated systems of metal in equilibrium metal exchange employing equilibrium dialysis. The conditions which are optimal for the site-specific replacement of the catalytic and/or noncatalytic zinc atoms of the native enzyme by cobalt are not identical with those which are utilized for substitution with 65Zn. Thus, while certain 65Zn hybrids can be prepared by exploiting the differential effects of buffer anions, the cobalt hybrids are generated by critical adjustments in the pH of the dialysate. Factors which may determine the mechanism of metal replacement reactions include acid-assisted, ligand-assisted, and metal-assisted dechelation, steric restriction, and ligand denticity as well as physicochemical properties of the enzyme itself. The spectral characteristics of the catalytic and noncatalytic cobalt atoms reflect both the geometry of the coordination complexes and the nature of the ligands and serve as sensitive probes of these loci in the enzyme.  相似文献   

10.
Reactive lysine residues in horse liver alcohol dehydrogenase   总被引:2,自引:0,他引:2  
Horse liver alcohol dehydrogenase was modified under various conditions with 14C-labelled formaldehyde in the presence of sodium borohydride. Changes in the enzymatic activity were correlated with incorporated label and modified residues were characterized. It is shown that most of the lysine residues react and that many are affected by the binding of coenzymes and inhibitors to the protein. Reactive residues are reported and possible structural and functional interpretations given.  相似文献   

11.
Zinc isotope exchange in horse liver alcohol dehydrogenase   总被引:5,自引:0,他引:5  
D E Drum  T K Li  B L Vallee 《Biochemistry》1969,8(9):3792-3797
  相似文献   

12.
13.
14.
The molecular weights of lyophilized and non-lyophilized horse liver alcohol dehydrogenase have been compared by quasi-elastic light scattering, and ultracentrifugation. Whereas the non-lyophilized enzyme has the expected molecular weight of 78 000, the lyophilized enz)me has an initial molecular weight of about 10(6) which increases with time by an endothermic process. This result shows that any physical measurement using lyophilized liver alcohol dehydrogenase to investigate the enzyme mechanism, which relies upon the molecular size, will be invalid.  相似文献   

15.
Excitation transfer in complexes of horse liver alcohol dehydrogenase   总被引:3,自引:0,他引:3  
The protein fluorescence of LADH1 was quenched upon coupling with NADH, NAD+, o-phenanthroline, or thyroxine and its related compounds, while AMP, ADP, ADPR, or NMN did not quench the fluorescence. Addition of isobutyramide or pyrazole to E2R2 or E2O2 did not alter the degree of quenching. The coupling of two molecules of NADH to one molecule of E2I2 caused an equal fluorescence enhancement for both molecules of NADH when excited in its 340-mμ absorption band. However, with excitation in the protein absorption range, it was found that the binding of the first NADH molecule to LADH caused a larger fluorescence change than the binding of the second one. This was ascertained by following the increase of the fluorescence caused by addition of excess E2 to E2I2R2, whereby the complexes E2I2R and E2I2 were formed. This seemed to indicate that excitation energy could be transferred from one subunit to the other in the same LADH molecule.  相似文献   

16.
17.
We investigated by stopped-flow techniques the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase varying the concentration of the reagents, pH and temperature. The course of the reaction under enzymelimiting conditions is biphasic and the measured amplitude of the initial step corresponds under saturation conditions to half of the total enzyme concentration (half-burst). The fast initial step (with a maximum rate of 20 s?1 at pH 7.0) shows an isotope effect of approximately 2, which indicates that this rate contains a contribution from a hydrogen transfer. It is also shown that this rate differs by at least one order of magnitude with respect to that of the hydrogen transfer during benzaldehyde reduction. The half-of-the-sites reactivity of alcohol dehydrogenase in the initial transient process is obtained independent of reagent concentration, pH and/or temperature. It is obtained also when coenzyme analogues are substituted for NAD, and when different alcohols are substituted for benzyl alcohol. These data are taken to demonstrate unequivocally that the half-of-the-sites reactivity of alcohol dehydrogenase cannot be due to an interplay of rate constants (as proposed by various authors) and must rather be ascribed to a kinetic non-equivalence of the two subunits when active ternary complexes are being formed. When oxidation of benzyl alcohol is carried out in the presence of 0.1 m-isobutyramide (which makes a very tight complex with NADH at the enzyme active site), reaction stops after formation of an amount of NADH product that is equivalent to one half of the enzyme active site concentration.This is considered in the light of the pyrazole experiment designed by McFarland &; Bernhard (1972), in which reduction of benzaldehyde is carried out in the presence of pyrazole (which forms a very tight ternary complex with NAD at the enzyme active site). In this case, reaction stops after formation of an amount of NAD-product which is equivalent to the total enzyme active site concentration. It is shown that accommodation of these two seemingly contradictory sets of data poses severe restrictions on the alcohol dehydrogenase mechanism. In particular, it is shown that the only mechanism that adheres to such requirements is one in which the two subunits have distinct and alternating functions in each enzyme cycle. These two functions are the triggering of the chemical transformation and the chemical transformation itself. It is also shown that binding of NAD-substrate to one subunit triggers chemical reactivity in the other NAD-alcohol-containing subunit, whereas on aldehyde reduction, the triggering event is desorption of alcohol product from the first reacted subunit.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号