首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work, we present a generalization of Zwanzig's protein unfolding analysis [Zwanzig, R., 1997. Two-state models of protein folding kinetics. Proc. Natl Acad. Sci. USA 94, 148-150; Zwanzig, R., 1995. Simple model of protein folding kinetics. Proc. Natl Acad. Sci. USA 92, 9801], in order to calculate the free energy change Delta(N)(D)F between the protein's native state N and its unfolded state D in a chemically induced denaturation. This Extended Zwanzig Model (EZM) is both based on an equilibrium statistical mechanics approach and the inclusion of experimental denaturation curves. It enables us to construct a suitable partition function Z and to derive an analytical formula for Delta(N)(D)F in terms of the number K of residues of the macromolecule, the average number nu of accessible states for each single amino acid and the concentration C(1/2) where the midpoint of the N<==>D transition occurs. The results of the EZM for proteins where chemical denaturation follows a sigmoidal-type profile, as it occurs for the case of the T70N human variant of lysozyme (PDB code: T70N) [Esposito, G., et al., 2003. J. Biol. Chem. 278, 25910-25918], can be splitted into two lines. First, EZM shows that for sigmoidal denaturation profiles, the internal degrees of freedom of the chain play an outstanding role in the stability of the native state. On the other hand, that under certain conditions DeltaF can be written as a quadratic polynomial on concentration C(1/2), i.e., DeltaF approximately aC(1/2)(2)+bC(1/2)+c, where a,b,c are constant coefficients directly linked to protein's size K and the averaged number of non-native conformations nu. Such functional form for DeltaF has been widely known to fit experimental measures in chemically induced protein denaturation [Yagi, M., et al., 2003. J. Biol. Chem. 278, 47009-47015; Asgeirsson, B., Guojonsdottir, K., 2006. Biochim. Biophys. Acta 1764, 190-198; Sharma, S., et al., 2006. Protein Pept. Lett. 13(4), 323-329; Salem, M., et al., 2006. Biochim. Biophys. Acta 1764(5), 903-912] so EZM can shed some light into the physical meaning of the experimental values for the a,b,c coefficients.  相似文献   

3.
4.
An RNA secondary structure is saturated if no base pairs can be added without violating the definition of secondary structure. Here we describe a new algorithm, RNAsat, which for a given RNA sequence a, an integral temperature 0 相似文献   

5.
It is shown that, for a tokamak in the cylindrical approximation, the variational problem in the paper by Yu.N. Dnestrovskij et al. “Variational Problems for the Canonical Profiles” is formulated not quite correctly. As a result, it is unfortunately impossible to link canonical profiles to the minimum of the magnetic energy of the plasma current.  相似文献   

6.
MOTIVATION: Homology search for RNAs can use secondary structure information to increase power by modeling base pairs, as in covariance models, but the resulting computational costs are high. Typical acceleration strategies rely on at least one filtering stage using sequence-only search. RESULTS: Here we present the multi-segment CYK (MSCYK) filter, which implements a heuristic of ungapped structural alignment for RNA homology search. Compared to gapped alignment, this approximation has lower computation time requirements (O(N?) reduced to O(N3), and space requirements (O(N3) reduced to O(N2). A vector-parallel implementation of this method gives up to 100-fold speed-up; vector-parallel implementations of standard gapped alignment at two levels of precision give 3- and 6-fold speed-ups. These approaches are combined to create a filtering pipeline that scores RNA secondary structure at all stages, with results that are synergistic with existing methods.  相似文献   

7.
Thermal denaturation of creatine kinase from rabbit skeletal muscle has been studied by differential scanning calorimetry. The excess heat capacity vs. temperature profiles were independent of protein concentration, but strongly temperature scanning rate-dependent. It has been shown that thermal denaturation of creatine kinase satisfies the previously proposed validity criteria for the two-state irreversible model [Kurganov et al., Biophys. Chem.70 (1997) 125]. The energy activation value has been calculated to be 461.0 +/- 0.7 kJ/mol.  相似文献   

8.
Poland D 《Biopolymers》2004,73(2):216-228
In this article we give a new method for the calculation of DNA melting profiles. Based on the matrix formulation of the DNA partition function, the method relies for its efficiency on the fact that the required matrices are very sparse, essentially reducing matrix multiplication to vector multiplication and thus making the computer time required to treat a DNA molecule containing N base pairs proportional to N(2). A key ingredient in the method is the result that multiplication by the inverse matrix can also be reduced to vector multiplication. The task of calculating the melting profile for the entire genome is further reduced by treating regions of the molecule between helix-plateaus, thus breaking the molecule up into independent parts that can each be treated individually. The method is easily modified to incorporate changes in the assignment of statistical weights to the different structural features of DNA. We illustrate the method using the genome of Haemophilus influenzae.  相似文献   

9.
Denitrifying glycogen-accumulating organisms (DGAO) were successfully enriched in a lab-scale sequencing batch reactor (SBR) running with anaerobic/anoxic cycles and acetate feeding during the anaerobic period. Acetate was completely taken up anaerobically, which was accompanied by the consumption of glycogen and the production of poly-beta-hydroxy-alkanoates (PHA). In the subsequent anoxic stage, nitrate or nitrite was utilized as electron acceptor for the oxidation of PHA, resulting in glycogen replenishment and cell growth. The above phenotype showed by the enrichment culture demonstrates the existence of DGAO. Further, it was found that the anaerobic behavior of DGAO could be predicted well by the anaerobic GAO model of Filipe et al. (2001) and Zeng et al. (2002a). The final product of denitrification during anoxic stage was mainly nitrous oxide (N(2)O) rather than N(2). The data strongly suggests that N(2)O production may be caused by the inhibition of nitrous oxide reductase by an elevated level of nitrite accumulated during denitrification. The existence of these organisms is a concern in biological nutrient removal systems that typically have an anaerobic/anoxic/aerobic reactor sequence since they are potential competitors to the polyphosphate-accumulating organisms.  相似文献   

10.
Summary High resolution thermal denaturation profiles of different members of fungus genus Fusarium were compared with respect to the shape of their DNA melting curves. Quantitative comparison of the shape (areas under differential curves) of all thermal denaturation profiles was made. Thermal denaturation profiles can be used to derive the quantitative parameter, genetic distance, defined by Soumpasis (12). Based on such data of genetic distance a dendrogram and a genetic distance tree was constructed.  相似文献   

11.
Precise recording of polyphasic optical melting curves was carried out for three kinds of bacteriophage lambda DNA differing in length (lambdac1857s7, lambdacIb2 and lambdacIb2b5). Each of denaturation steps in melting profiles was characterized by two parameters, the melting temperature and the relative size. Any difference in fine structures in melting profiles was not recognized between the intact lambdacI857s7DNA and the DNA fragmented into halves. The change in fine structures in melting profiles caused by the deletions of the b2 and b5 region agreed qualitatively well with the prediction based on the physical and the genetical maps of phage lambda chromosome. The combined results indicate that, first, the well-known linear relationship between melting temperature and G+C content may apply also to each of denaturation steps in polyphasic melting curves due to heterogeneity of nucleotide distribution in a single DNA species, and, second, the effect of molecular ends on melting fine structures can be neglected at moderate salt concentration (0.01 M less than or equal to Na+ less than or equal to 0.2 M) for such a high molecular weight DNA. The heterogeneous distribution of nucleotides was derived for lambdaDNA and for its b2 and b5 regions.  相似文献   

12.
Derivative denaturation profiles of calf thymus DNA in the presence of copper(II) ions have been directly obtained from high resolution thermal denaturation profiles recorded in an isoabsorbance wavelength of the AT and GC hyperchromic spectra. The analysis of the very sensitive profiles provides further evidence that the melting temperature (Tm) of DNA decreases in the presence of stoichiometric ratio of copper(II) ions to nucleotide. Also, evidence is given of peculiar behaviour at higher temperatures where a new melting transition is observed. This phenomenon could be in line with the presence of bridging of DNA single strands by copper ions which are disrupted when the temperature is raised.  相似文献   

13.
This novel approach to the analysis of multiexponential functions is based on the combined use of the Laplace transform and Padé approximants (Yeramian, E., and P. Claverie. 1987. Nature (Lond.). 326:169-174). It is similar in principle to the well-known Isenberg method of moments (Isenberg, I. 1983. Biophys. J. 43:141-148) traditionally applied to the analysis of fluorescence decay. The advantage of the Padé-Laplace method lies in its ability to detect the number of components in a multiexponential function as well as their parameters. In this paper we modified the original method so that it can be applied to the analysis of multifrequency phase/modulation measurements of fluorescence decay. The method was tested first on simulated data. It afforded recovery up to four distinct lifetime components (and their fractional contributions). In the case of simulated data corresponding to continuous lifetime distributions (nonexponential decay), the results of the analysis by the Padé-Laplace method indicated the absence of discrete exponential components. The method was also applied to real phase/modulation data gathered on known fluorophores and their mixtures and on tryptophan fluorescence in phospholipase A2. The lifetime and fraction recoveries were consistent with those obtained from standard methods involving nonlinear least-square fitting.  相似文献   

14.
Many applications of data partitioning (clustering) have been well studied in bioinformatics. Consider, for instance, a set N of organisms (elements) based on DNA marker data. A partition divides all elements in N into two or more disjoint clusters that cover all elements, where a cluster contains a non-empty subset of N. Different partitioning algorithms may produce different partitions. To compute the distance and find the consensus partition (also called consensus clustering) between two or more partitions are important and interesting problems that arise frequently in bioinformatics and data mining, in which different distance functions may be considered in different partition algorithms. In this article, we discuss the k partition-distance problem. Given a set of elements N with k partitions of N, the k partition-distance problem is to delete the minimum number of elements from each partition such that all remaining partitions become identical. This problem is NP-complete for general k?>?2 partitions, and no algorithms are known at present. We design the first known heuristic and approximation algorithms with performance ratios 2 to solve the k partition-distance problem in O(k?·?ρ?·?|N|) time, where ρ is the maximum number of clusters of these k partitions and |N| is the number of elements in N. We also present the first known exact algorithm in O(??·?2(?)·k(2)?·?|N|(2)) time, where ? is the partition-distance of the optimal solution for this problem. Performances of our exact and approximation algorithms in testing the random data with actual sets of organisms based on DNA markers are compared and discussed. Experimental results reveal that our algorithms can improve the computational speed of the exact algorithm for the two partition-distance problem in practice if the maximum number of elements per cluster is less than ρ. From both theoretical and computational points of view, our solutions are at most twice the partition-distance of the optimal solution. A website offering the interactive service of solving the k partition-distance problem using our and previous algorithms is available (see http://mail.tmue.edu.tw/~yhchen/KPDP.html).  相似文献   

15.
The thermal denaturation method for studying the structural organization of double-stranded RNA (dsRNA) from virus-like particles of killer yeasts Saccharomyces cerevisiae was used. High resolution derivative denaturation profiles of total dsRNA and its L- and M-types were obtained. Comparative analysis of these data with those on phage DNA denaturation demonstrated that the processes of denaturation of dsRNA and phage DNA were identical in quality. Increase of thermostability, interval of thermal denaturation and width of local helix-to-coil transitions in dsRNA as compared with phage DNA are caused by the differences of corresponding thermodynamic parameters. Derivative denaturation profiles of L- and M-types of yeasts dsRNA were shown to have certain identical local transitions. Low melting transition, consisting of three local thermalites, is due to the denaturation of AU-rich region (about 200 n.b.p.) in M-dsRNA.  相似文献   

16.
The conformational stabilities of bovine lens gamma-crystallin fractions II, IIIA, IIIB, and IVA and those modified with glutathione were compared by studying the thermal and guanidine hydrochloride (Gdn-HCl) denaturation behavior. The conformational state was monitored by both far-UV CD and fluorescence measurements. All the gamma-crystallins studied showed a sigmoidal order-disorder transition with varied melting temperatures. The thermal denaturation of these proteins is reversible up to a temperature 3 or 4 degrees C above T 1/2; above this temperature, irreversible aggregation occurs. The validity of a two-state approximation of both thermal and Gdn-HCl denaturation was tested for all four crystallins, and the presence of one or more intermediates was evident in the unfolding of IVA. delta GDH2O values of these crystallins range from 4 to 9 kcal/mol. Upon glutathione treatment IVA showed the maximum decrease in T 1/2 by approximately 9 degrees C and in delta GDH2O value by 29%; the smallest decrease in T 1/2 was for IIIA by 2 degrees C and in delta GDH2O by 15%. We have demonstrated that the glutathione reaction can dramatically reduce the conformational stability of gamma-crystallins and, thus, that the thermodynamic quantities of the unreacted crystallins can be used to evaluate the stability of these proteins when modified during cataract formation.  相似文献   

17.
Zhang J  Li W  Wang J  Qin M  Wang W 《Proteins》2008,72(3):1038-1047
Downhill folding is one of the most important predictions of energy landscape theory. Recently, the Escherichia coli 2-oxoglutarate dehydrogenase PSBD was described as a first example of global downhill folding (Garcia-Mira et al., Science 2002;298:2191), classification that has been later subject of significant controversy. To help resolve this problem, by using intensive all-atom simulation with explicit water model and the replica exchange method, we sample the phase space of protein BBL and depict the free energy landscape. We give an estimate of the free energy barrier height of 1-2 k(B)T, dependent on the way the energy landscape is projected. We also study the conformational distribution of the transition region and find that the three helices generally take the similar positions as that in the native states whereas their spatial orientations show large variability. We further detect the inconsistency between different signals by individually fitting the thermal denaturation curves of five structural features using two-state model, which gives a wide spread melting temperature of 19 K. All of these features are consistent with a picture of folding with very low cooperativities. Compared with the experimental data (Sadqi et al., Nature 2006; 442:317), our results indicate that the Naf-BBL (pH5.3) may have an even lower barrier height and cooperativity.  相似文献   

18.
We describe a new DNA sequencing method called sequencing by denaturation (SBD). A Sanger dideoxy sequencing reaction is performed on the templates on a solid surface to generate a ladder of DNA fragments randomly terminated by fluorescently labeled dideoxyribonucleotides. The labeled DNA fragments are sequentially denatured from the templates and the process is monitored by measuring the change in fluorescence intensities from the surface. By analyzing the denaturation profiles, the base sequence of the template can be determined. Using thermodynamic principles, we simulated the denaturation profiles of a series of oligonucleotides ranging from 12 to 32 bases and developed a base-calling algorithm to decode the sequences. These simulations demonstrate that DNA molecules up to 20 bases can be sequenced by SBD. Experimental measurements of the melting profiles of DNA fragments in solution confirm that DNA sequences can be determined by SBD. The potential limitations and advantages of SBD are discussed. With SBD, millions of sequencing reactions can be performed on a small area on a surface in parallel with a very small amount of sequencing reagents. Therefore, DNA sequencing by SBD could potentially result in a significant increase in speed and reduction in cost in large-scale genome resequencing.  相似文献   

19.
Systematic photometric studies are presented to analyze the thermal denaturation behaviour with and without formamide of metaphase chromosome suspensions in comparison to DNA solutions. Temperature dependent hyperchromicity measurements at 256 nm and 313 nm were performed using an appropriately designed computer-controlled photometer device. Due to an upright optical axis, this allowed absorbance measurements with negligible sedimentation effects not only for solutions of pure DNA, but also for particle suspensions of isolated metaphase chromosomes. This device has a temperature resolution of +/- 0.5 degrees C and an optical sensitivity of 10(-3) to 10(-4) optical density. For calf thymus DNA the reduction of the melting point with the increase of formamide in the solution was measured at pH 7.0 and pH 3.2. The good correlation of the theoretical approximation to experimental data indicated the suitability of the apparatus to quantitatively describe DNA conformation changes induced by thermal denaturation. For metaphase chromosome preparations of Chinese hamster culture cells, absorbance changes were measured between 20 degrees C and 95 degrees C with a temperature gradient of 1 degrees C/min. These measurements were performed at pH 7.0 and at pH 3.2. The denaturation profiles (= first derivative of the absorbance curve) resulted in a highly variable peak pattern at 256 nm and 313 nm indicating complex conformation changes. A statistical evaluation of the temperature values of the peak maxima resulted in temperature ranges typical for chromosomal conformation changes during thermal treatment. Especially the range of highest temperature values was independent from pH modifications. For pH 3.2 the influence of formamide on the denaturation behaviour of metaphase chromosome preparations was analyzed. In contrast to pure DNA solutions, a reduction of the "melting point" (i.e. the maximum temperature at which a conformation change takes place) was not found. However, the denaturation behaviour depended on the duration of formamide treatment before the measurement.  相似文献   

20.
We have semiempirically studied the thermal denaturation profiles of complexes formed between double strand polynucleotides and pure stabilizer nonspecific binding ligands. By using the McGhee model (J. D. McGhee, (1976) Biopolymers 15, 1345-1375) we have found a simple, analytical relationship between the melting temperature (Tm) and the Kh (intrinsic association constant), nh (apparent site size), and wh (cooperativity constant) values of the interaction. The validity of this approach strongly depends on the sigma value (sigma being the nucleation parameter of the DNA). Through the equation so obtained it is possible to calculate the Kh, nh, and wh values from the melting temperature of three experimental thermal denaturation profiles at different r (ligand/polynucleotide ratio) values. The method has been checked by studying the thermal denaturation profiles of daunomycin-poly(d(A-T)).poly(d(A-T)) complexes in two different salt concentrations. The results so obtained are compared with those previously described using other techniques. The applicability of the method here developed is discussed in relation with both the nature of the ligands and the value of the nucleation parameter (sigma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号