首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
c-Cbl-mediated regulation of LAT-nucleated signaling complexes   总被引:2,自引:0,他引:2       下载免费PDF全文
The engagement of the T-cell receptor (TCR) causes the rapid recruitment of multiple signaling molecules into clusters with the TCR. Upon receptor activation, the adapters LAT and SLP-76, visualized as chimeric proteins tagged with yellow fluorescent protein, transiently associate with and then rapidly dissociate from the TCR. Previously, we demonstrated that after recruitment into signaling clusters, SLP-76 is endocytosed in vesicles via a lipid raft-dependent pathway that requires the interaction of the endocytic machinery with ubiquitylated proteins. In this study, we focus on LAT and demonstrate that signaling clusters containing this adapter are internalized into distinct intracellular compartments and dissipate rapidly upon TCR activation. The internalization of LAT was inhibited in cells expressing versions of the ubiquitin ligase c-Cbl mutated in the RING domain and in T cells from mice lacking c-Cbl. Moreover, c-Cbl RING mutant forms suppressed LAT ubiquitylation and caused an increase in cellular LAT levels, as well as basal and TCR-induced levels of phosphorylated LAT. Collectively, these data indicate that following the rapid formation of signaling complexes upon TCR stimulation, c-Cbl activity is involved in the internalization and possible downregulation of a subset of activated signaling molecules.  相似文献   

3.
Mitogen-activated protein kinase (MAPK) cascades are involved in a variety of cellular responses including proliferation, differentiation, and apoptosis. We have developed an expression screening method to detect in vivo substrates of MAPKs in mammalian cells, and identified a membrane protein, linker for activation of T cells (LAT), as an MAPK target. LAT, an adapter protein essential for T-cell signaling, is phosphorylated at its Thr 155 by ERK in response to T-cell receptor stimulation. Thr 155 phosphorylation reduces the ability of LAT to recruit PLCgamma1 and SLP76, leading to attenuation of subsequent downstream events such as [Ca2+]i mobilization and activation of the ERK pathway. Our data reveal a new role for MAPKs in a negative feedback loop in T-cell activation via threonine phosphorylation of LAT.  相似文献   

4.
The integral membrane protein linker for activation of T cells (LAT) is a central adapter protein in the T-cell receptor (TCR)-mediated signaling pathways. The cellular localization of LAT is extremely sensitive to intracellular redox balance alterations. Reduced intracellular levels of the antioxidant glutathione (GSH), a hallmark of chronic oxidative stress, resulted in the membrane displacement of LAT, abrogated TCR-mediated signaling and consequently hyporesponsiveness of T lymphocytes. The membrane displacement of LAT is accompanied by a considerable difference in the mobility of LAT upon native and nonreducing denaturing polyacrylamide gel electrophoresis analysis, a finding indicative of a conformational change. Targeted mutation of redox-sensitive cysteine residues within LAT created LAT mutants which remain membrane anchored under conditions of chronic oxidative stress. The expression of redox-insensitive LAT mutants allows for restoration of TCR-mediated signal transduction, whereas CD28-mediated signaling pathways remained impaired. These results are indicative that the membrane displacement of LAT as a result of redox balance alterations is a consequence of a conformational change interfering with the insertion of LAT into the plasma membrane. Conclusively, the data suggest a role for LAT as a crucial intermediate in the sensitivity of TCR signaling and hence T lymphocytes toward chronic oxidative stress.  相似文献   

5.
Dynamic protein-protein interactions are involved in most physiological processes and, in particular, for the formation of multiprotein signaling complexes at transmembrane receptors, adapter proteins and effector molecules. Because the unregulated induction of signaling complexes has substantial clinical relevance, the investigation of these complexes is an active area of research. These studies strive to answer questions about the composition and function of multiprotein signaling complexes, along with the molecular mechanisms of their formation. In this review, the adapter protein, linker for activation of T cells (LAT), will be employed as a model to exemplify how signaling complexes are characterized using a range of techniques. The intensive investigation of LAT highlights how the systematic use of complementary techniques leads to an integrated understanding of the formation, composition and function of multiprotein signaling complexes that occur at receptors, adapter proteins and effector molecules.  相似文献   

6.
Recent studies have demonstrated a requirement for the SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activation of T cells) adaptor/linker proteins in T cell antigen receptor activation and T cell development as well as the BLNK (B cell linker) linker protein in B cell antigen receptor (BCR) signal transduction and B cell development. Whereas the SLP-76 and LAT adaptor proteins are expressed in T, natural killer, and myeloid cells and platelets, BLNK is preferentially expressed in B cells and monocytes. Although BLNK is structurally homologous to SLP-76, BLNK interacts with a variety of downstream signaling proteins that interact directly with both SLP-76 and LAT. Here, we demonstrate that neither SLP-76 nor LAT alone is sufficient to restore the signaling deficits observed in BLNK-deficient B cells. Conversely, the coexpression of SLP-76 and LAT together restored BCR-inducible calcium responses as well as activation of all three families of mitogen-activated protein kinases. Together, these data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function.  相似文献   

7.
8.
The primary activating receptor for T cells is the T cell receptor (TCR), which is stimulated upon binding to an antigen/MHC complex. TCR activation results in the induction of regulated signaling pathways vital for T cell differentiation, cellular adhesion and cytokine release. A critical TCR-induced signaling protein is the adaptor protein LAT. Upon TCR stimulation, LAT is phosphorylated on conserved tyrosines, which facilitates the formation of multiprotein complexes needed for propagation of signaling pathways. Although the role of the conserved tyrosines in LAT-mediated signaling has been investigated, few studies have examined the role of larger regions of LAT in TCR-induced pathways. In this study, a sequence alignment of 97 mammalian LAT proteins was used to identify several “functional” domains on LAT. Using LAT mutants expressed in Jurkat E6.1 cells, we observed that the membrane proximal, proline-rich region of LAT and the correct order of domains containing conserved tyrosines are necessary for optimal TCR-mediated early signaling, cytokine production, and cellular adhesion. Together, these data show that LAT contains distinct regions whose presence and correct order are required for the propagation of TCR-mediated signaling pathways.  相似文献   

9.
T-cell antigen receptor engagement causes the rapid assembly of signaling complexes. The adapter protein SLP-76, detected as SLP-yellow fluorescent protein, initially clustered with the TCR and other proteins, then translocated medially on microtubules. As shown by total internal reflection fluorescence microscopy and the inhibition of SLP-76 movement at 16 degrees C, this movement required endocytosis. Immunoelectron microscopy showed SLP-76 staining of smooth pits and tubules. Cholesterol depletion decreased the movement of SLP-76 clusters, as did coexpression of the ubiquitin-interacting motif domain from eps15. These data are consistent with the internalization of SLP-76 via a lipid raft-dependent pathway that requires interaction of the endocytic machinery with ubiquitinylated proteins. The endocytosed SLP-76 clusters contained phosphorylated SLP-76 and phosphorylated LAT. The raft-associated, transmembrane protein LAT likely targets SLP-76 to endocytic vesicles. The endocytosis of active SLP-76 and LAT complexes suggests a possible mechanism for downregulation of signaling complexes induced by TCR activation.  相似文献   

10.
The generation of multiprotein complexes at receptors and adapter proteins is crucial for the activation of intracellular signaling pathways. In this study, we used multiple biochemical and biophysical methods to examine the binding properties of several SH2 and SH3 domain-containing signaling proteins as they interact with the adapter protein linker for activation of T-cells (LAT) to form multiprotein complexes. We observed that the binding specificity of these proteins for various LAT tyrosines appears to be constrained both by the affinity of binding and by cooperative protein-protein interactions. These studies provide quantitative information on how different binding parameters can determine in vivo binding site specificity observed for multiprotein signaling complexes.  相似文献   

11.
The adapter molecule LAT is a nucleating site for multiprotein signaling complexes that are vital for the function and differentiation of T cells. Extensive investigation of LAT in multiple experimental systems has led to an integrated understanding of the formation, composition, regulation, dynamic movement, and function of LAT-nucleated signaling complexes. This review discusses interactions of signaling molecules that bind directly or indirectly to LAT and the role of cooperativity in stabilizing LAT-nucleated signaling complexes. In addition, it focuses on how imaging studies visualize signaling assemblies as signaling clusters and demonstrate their dynamic nature and cellular fate. Finally, this review explores the function of LAT based on the interpretation of mouse models using various LAT mutants.  相似文献   

12.
13.
SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.  相似文献   

14.
T cell antigen receptor (TCR) activation triggers profound changes in the actin cytoskeleton. In addition to controlling cellular shape and polarity, this process regulates vital T cell responses, such as T cell adhesion, motility, and proliferation. These depend on the recruitment of the signaling proteins Nck and Wiskott-Aldrich syndrome protein (WASp) to the site of TCR activation and on the functional properties of the adapter proteins linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). We now demonstrate that Nck is necessary but insufficient for the recruitment of WASp. We show that two pathways lead to SLP76-dependent actin rearrangement. One requires the SLP76 acidic domain, crucial to association with the Nck SH2 domain, and another requires the SLP76 SH2 domain, essential for interaction with the adhesion- and degranulation-promoting adapter protein ADAP. Functional cooperation between Nck and ADAP mediates SLP76-WASp interactions and actin rearrangement. We also reveal the molecular mechanism linking ADAP to actin reorganization.  相似文献   

15.
16.
The adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an essential mediator of signaling from the T-cell antigen receptor (TCR). We report here that SLP-76 also mediates signaling downstream of integrins in T cells and that SLP-76-deficient T cells fail to support adhesion to integrin ligands. In response to both TCR and integrin stimulation, SLP-76 relocalizes to surface microclusters that colocalize with phosphorylated signaling proteins. Disruption of SLP-76 recruitment to the protein named LAT (linker for activation of T cells) inhibits SLP-76 clustering downstream of the TCR but not downstream of integrins. Conversely, an SLP-76 mutant unable to bind ADAP (adhesion and degranulation-promoting adapter protein) forms clusters following TCR but not integrin engagement and fails to support T-cell adhesion to integrin ligands. These findings demonstrate that SLP-76 relocalizes to integrin-initiated signaling complexes by a mechanism different from that employed during TCR signaling and that SLP-76 relocalization corresponds to SLP-76-dependent integrin function in T cells.Coordinated signals from the extracellular environment direct T-cell functions, including cell trafficking and antigen-driven cell activation. One way that T cells make contact with their environment is through integrins expressed on the cell surface. Integrins are heterodimeric proteins that bind adhesion molecules in the extracellular matrix and on the surface of other cells (26). The predominant integrins expressed on T cells are leukocyte function-associated antigen 1 (LFA-1 [αLβ2]) and very late antigen 4 (VLA-4 [α4β1]). By associating with both extracellular adhesion molecules and the cytoskeleton, integrins bridge the cell exterior and interior. Integrin function is critical for T-cell development, trafficking through the vasculature and tissues, the formation of conjugates with antigen-presenting cells, T-cell activation, and directed cytokine secretion (18, 38, 43, 47).Extensive studies of proximal signaling downstream of the engaged T-cell antigen receptor (TCR) have provided a model of how T cells respond to extracellular cues (44). TCR stimulation triggers the activation of the protein tyrosine kinases (PTKs) Lck and ζ-associated protein of 70 kDa (ZAP-70), resulting in the phosphorylation of the transmembrane adapter protein linker for activation of T cells (LAT). Another critical adapter protein, SH2 domain-containing leukocyte protein of 76 kDa (SLP-76), is recruited to phosphorylated LAT via its binding partner Grb2-related adapter downstream of Shc (Gads) (42). Together, SLP-76 and LAT form a multimolecular signaling complex at the cell membrane, resulting in activation of effector proteins and reorganization of the actin cytoskeleton. The dynamic relocalization of SLP-76 to TCR-initiated surface signaling complexes has been characterized using biochemical and live cell imaging approaches (7, 42, 51). In these studies, the TCR-induced recruitment of SLP-76 to microclusters coincident with the presence of PTKs and other signaling proteins was visualized in real time. As these reports show, SLP-76 microclusters arise at the periphery of the spreading T cell and then migrate inward (5) in a process shown recently to be modulated by TCR coligation with integrins (5, 35).Integrins in hematopoietic cells are maintained in an inactive conformation and possess low affinity for their ligands (40). “Inside-out” signals originating at either the TCR or chemokine receptors upregulate integrin affinity (47). Integrins in the active conformation then bind adhesion molecule ligands and initiate “outside-in” signals, resulting in altered cell morphology and enhanced adhesive and proliferative responses (reviewed in reference 3). Work to elucidate outside-in signaling pathways in various hematopoietic lineages has uncovered a role for PTKs as well as adapter proteins downstream of engaged integrins. Src and Syk family kinases have been shown to initiate signals from stimulated integrins, phosphorylating target adapter proteins (including SLP-76), and the adhesion and degranulation-promoting adapter protein (ADAP) (2, 15, 17, 49). SLP-76 and ADAP have also been found to organize integrin signals in myeloid lineages and platelets and to contribute to integrin-dependent cell functions (20, 22, 34, 46).While considerable progress has been made in defining how PTKs and adapters organize signaling from the TCR, much less is understood about how these molecules function downstream of integrins in T cells. Although a number of recent elegant papers have suggested that the immunoreceptor tyrosine-based activation motif (ITAM) and integrin second-messenger pathways intersect at a point very close to the membrane, how signals are then differentiated by the cell remains unclear (30, 52, 53). For this report, we made use of an inducible in vivo model to control SLP-76 expression and test the role of this adapter protein in integrin-initiated signaling in T cells. Our findings demonstrate an essential role for SLP-76 in T-cell integrin function that correlates with the relocalization of SLP-76 to signaling microclusters initiated by integrin ligation. Interestingly, the requirements for SLP-76 partner proteins and the domains of SLP-76 that they bind are distinct with respect to SLP-76 functions downstream of integrins versus the TCR, suggesting that adapter proteins mediate both overlapping and distinct signaling pathways from these receptors.  相似文献   

17.
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.  相似文献   

18.
Src family tyrosine kinases play a key role in T-cell antigen receptor (TCR) signaling. They are responsible for the initial tyrosine phosphorylation of the receptor, leading to the recruitment of the ZAP-70 tyrosine kinase, as well as the subsequent phosphorylation and activation of ZAP-70. Molecular and genetic evidence indicates that both the Fyn and Lck members of the Src family can participate in TCR signal transduction; however, it is unclear to what extent they utilize the same signal transduction pathways and activate the same downstream events. We have addressed this issue by examining the ability of Fyn to mediate TCR signal transduction in an Lck-deficient T-cell line (JCaM1). Fyn was able to induce tyrosine phosphorylation of the TCR and recruitment of the ZAP-70 kinase, but the pattern of TCR phosphorylation was altered and activation of ZAP-70 was defective. Despite this, the SLP-76 adapter protein was inducibly tyrosine phosphorylated, and both the Ras-mitogen-activated protein kinase and the phosphatidylinositol 4, 5-biphosphate signaling pathways were activated. TCR stimulation of JCaM1/Fyn cells induced the expression of the CD69 activation marker and inhibited cell growth, but NFAT activation and the production of interleukin-2 were markedly reduced. These results indicate that Fyn mediates an alternative form of TCR signaling which is independent of ZAP-70 activation and generates a distinct cellular phenotype. Furthermore, these findings imply that the outcome of TCR signal transduction may be determined by which Src family kinase is used to initiate signaling.  相似文献   

19.
Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive "signaling waves" revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号