首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In African trypanosomes most enzymes of the glycolytic pathway are found in a microbody-like organelle, called the glycosome. The analysis of their structural and functional properties has shown that these glycosomal enzymes possess some specific features which are absent from the cytosolic proteins of trypanosomes and from the glycolytic enzymes of other organisms, where glycolysis is not compartmentalized within an organelle. The specific properties of the glycosomal enzymes may be responsible for the routing of the proteins from their site of synthesis, the cytosol, into the glycosome, or they may be involved in the proper functioning of the enzymes within the organelle. Whatever the role of the unique features, they are potential targets for compounds that could specifically interfere with glycolysis in trypanosomes. Therefore, a detailed study of the glycolytic enzymes of trypanosomes may lead to the development of therapeutically useful drugs against these harmful parasites.  相似文献   

2.
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.  相似文献   

3.
Unlike other eukaryotic cells, trypanosomes possess a compartmentalized glycolytic pathway. The conversion of glucose into 3-phosphoglycerate takes place in specialized peroxisomes, called glycosomes. Further conversion of this intermediate into pyruvate occurs in the cytosol. Due to this compartmentation, many regulatory mechanisms operating in other cell types cannot work in trypanosomes. This is reflected by the insensitivity of the glycosomal enzymes to compounds that act as activity regulators in other cell types. Several speculations have been raised about the function of compartmentation of glycolysis in trypanosomes. We calculate that even in a noncompartmentalized trypanosome the flux through glycolysis should not be limited by diffusion. Therefore, the sequestration of glycolytic enzymes in an organelle may not serve to overcome a diffusion limitation. We also search the available data for a possible relation between compartmentation and the distribution of control of the glycolytic flux among the glycolytic enzymes. Under physiological conditions, the rate of glycolytic ATP production in the bloodstream form of the parasite is possibly controlled by the oxygen tension, but not by the glucose concentration. Within the framework of Metabolic Control Analysis, we discuss evidence that glucose transport, although it does not qualify as the sole rate-limiting step, does have a high flux control coefficient. This, however, does not distinguish trypanosomes from other eukaryotic cell types without glycosomes.  相似文献   

4.
Many genes in eukaryotes are acquisitions from the free-living antecedents of chloroplasts and mitochondria. But there is no evolutionary ‘homing device’ that automatically directs the protein product of a transferred gene back to the organelle of its provenance. Instead, the products of genes acquired from endosymbionts can explore all targeting possibilities within the cell. They often replace pre-existing host genes, or even whole pathways. But the transfer of an enzymatic pathway from one compartment to another poses severe problems: over evolutionary time, the enzymes of the pathway acquire their targeting signals for the new compartment individually, not in unison. Until the whole pathway is established in the new compartment, newly routed individual enzymes are useless, and their genes will be lost through mutation. Here it is suggested that pathways attain novel compartmentation variants via a ‘minor mistargeting’ mechanism. If protein targeting in eukaryotic cells possesses enough imperfection such that small amounts of entire pathways continuously enter novel compartments, selectable units of biochemical function would exist in new compartments, and the genes could become selected. Dual-targeting of proteins is indeed very common within eukaryotic cells, suggesting that targeting variation required for this minor mistargeting mechanism to operate exists in nature.  相似文献   

5.
Summary The sequences of the ribosomal proteins YS25, SP-S28, RL-S21, and Ec-S6, fromSaccharomyces cerevisiae, Schizosaccharomyces pombe, rat liver, andEscherichia coli, respectively, have been examined using a computer program that searches for homologous tertiary structures. Matrices of comparisons among the eukaryotic sequences show that they match each other sequentially without any internal gaps. The average values of the correlation coefficients obtained from the comparison matrices are higher for the first halves of the sequences than for the latter halves. This result suggests that the first halves of the sequences may represent a more important domain than the latter halves. The comparison matrices between the eukaryotic and bacterial sequences of ribosomal proteins, however, do not show sequentially arranged homology, though there are six well-matching segments arranged in different orders in the two types of sequences. This implies that the eukaryotic sequences of the ribosomal protein were reconstituted by two internal transpositions and six deletions of 4–12 residues each from the ancestral sequence during the divergence between bacterial and eukaryotic genes. These findings may give insight into structural and quantitative studies of evolutionary divergence between eukaryotes and prokaryotes.  相似文献   

6.
7.
Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designatedART3andART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32–41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and byin situhybridization, we have mapped the two genes to human chromosomes 4p14–p15.1 and 12q13.2–q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the “tip of an iceberg,” i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation.  相似文献   

8.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

9.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI) are essential to glycolysis, the major route of carbohydrate breakdown in eukaryotes. In animals and other heterotrophic eukaryotes, both enzymes are localized in the cytosol; in photosynthetic eukaryotes, GAPDH and TPI exist as isoenzymes that function in the glycolytic pathway of the cytosol and in the Calvin cycle of chloroplasts. Here, we show that diatoms--photosynthetic protists that acquired their plastids through secondary symbiotic engulfment of a eukaryotic rhodophyte--possess an additional isoenzyme each of both GAPDH and TPI. Surprisingly, these new forms are expressed as an TPI-GAPDH fusion protein which is imported into mitochondria prior to its assembly into a tetrameric bifunctional enzyme complex. Homologs of this translational fusion are shown to be conserved and expressed also in nonphotosynthetic, heterokont-flagellated oomycetes. Phylogenetic analyses show that mitochondrial GAPDH and its N-terminal TPI fusion branch deeply within their respective eukaryotic protein phylogenies, suggesting that diatom mitochondria may have retained an ancestral state of glycolytic compartmentation that existed at the onset of mitochondrial symbiosis. These findings strongly support the view that nuclear genes for enzymes of glycolysis in eukaryotes were acquired from mitochondrial genomes and provide new insights into the evolutionary history (host-symbiont relationships) of diatoms and other heterokont-flagellated protists.  相似文献   

10.
Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI-GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part of the glycolytic pathway occurs inside mitochondria in these organisms, broadening our knowledge of the diversity of mitochondrial metabolism of protists.  相似文献   

11.
In order to get an insight into the evolutionary aspect of metabolic pathways, especially of the ubiquitous glycolytic pathway, we have carried out an extensive search of sense-sense and sense-antisense similarities for enzyme proteins in the glycolytic pathway, the pentose phosphate cycle, alcohol and lactate fermentation pathways and the TCA cycle. This investigation of amino acid sequences reveals a curious pattern of similarity relations; no similarity can be found between the enzyme proteins in a section of the glycolytic pathway where the glyceraldehyde-3-phosphate or even glycerol-3-phosphate is converted into the pyruvate while many examples of sense-sense and sense-antisense similarities are found even between enzyme proteins in distant blocks, e.g. between the proteins in the TCA cycle and those in the pentose phosphate cycle, as well as between the functionally associated proteins in each of these blocks. Complementary to this characteristic pattern of amino acid sequence similarity, the search for similarities of nucleotide sequences also finds that the similarities of glycolytic enzyme genes, some sense-sense and others sense-antisense similarities, are concentrated on the nucleotide sequences of prokaryotic 16S or eukaryotic 18S ribosomal RNA gene with its flanks, although some of the copy sequences are also found in transfer RNA genes as well as in 23S or 26S ribosomal RNA gene. These results strongly suggest that the metabolic pathways have been developed by the chance assembly of enzyme proteins generated from the sense and antisense strands of pre-existing genes, e.g. the fermentation pathways and pentose phosphate cycle by the proteins from the genes of enzymes in the glycolytic pathway and the TCA cycle from all these successively increased genes, ascribing the origin of metabolic enzyme genes to the close relation between the glycolytic enzyme protein genes and the RNA gene cluster.  相似文献   

12.
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.  相似文献   

13.
Summary Glycolytic parameters were determined in recessive yeast mutants with partial defects in carbon catabolite repression. Specific activities of pyruvate kinase and pyruvate decarboxylase in glucose grown cells of all mutant and wild type stains were 4–5 times higher than in ethanol grown cells. Mutants of gene HEX1 had a reduced hexose phosphorylating activity on allmedia wheras those of gene HEX2 had elevated levels but only in glucose grown cells. Mutants of gene CAT80 were normal in this respect. All other glycolytic enzymes were normal in all mutants. This was also true for glycolytic intermediates. Only hexlmutants showed a reduced fermentation of repressing sugars. The three genes appear to be involved in catabolite repression of several but not of all repressible enzymes. Even though all three types of mutants show a limited overlap in their effects on certain enzymes, they still are distinctly different in their action spectra. Carbon catabolite repression apparently does not depend on the sole accumulation of glycolytic intermediales. The activity of the products of the three genes HEX1, HEX2 and CAT80 are required directly or indirectly for triggering carbon catabolite repression. Even a small segment of carbon catabolite repression is controlled by several genes with regulatory functions indicating that the entire regulatory circuit is highly complex.  相似文献   

14.
The effect of anaerobiosis and anhydrobiosis on the extent of binding of glycolytic enzymes to the particulate fraction of the cell was studied in Artemia salina embryos. During control aerobic development, trehalase, phosphofructokinase and pyruvate kinase showed an increase in the percentage associated with the particulate fraction which is consistent with the carbohydrate-based metabolism of Artemia embryos. However, anaerobiosis resulted in decreased enzyme binding for six glycolytic enzymes; hexokinase, aldolase, pyruvate kinase and lactate dehydrogenase were the exceptions. Decreased enzyme binding was also observed after exposure to dehydrating conditions. The results suggest that glycolytic rate could be regulated by changes in the distribution of glycolytic enzymes between free and bound forms in Artemia embryos. This reversible interaction of glycolytic enzymes with structural proteins may account for part of the metabolic arrest observed during anaerobic dormancy and anhydrobiosis.Abbreviation pHi intracellular concentration of H+ ions  相似文献   

15.
Summary Furfural, a Maillard reaction product, was found to inhibit growth and alcohol production by Saccharomyces cerevisiae. Furfural concentrations above 1 mg ml–1 significantly decreased CO2 evolution by resuspended yeast cells. Important glycolytic enzymes such as hexokinase, phosphofructokinase, triosephosphate dehydrogenase, aldolase and alcohol dehydrogenase were assayed in presence of furfural. Dehydrogenases appeared to be the most sensitive enzymes and are probably responsible for the observed inhibition of alcohol production and growth.  相似文献   

16.
The tempo at which a protein evolves depends not only on the rate at which mutations arise but also on the selective effects that those mutations have at the organismal level. It is intuitive that proteins functioning during different stages of development may be predisposed to having mutations of different selective effects. For example, it has been hypothesized that changes to proteins expressed during early development should have larger phenotypic consequences because later stages depend on them. Conversely, changes to proteins expressed much later in development should have smaller consequences at the organismal level. Here we assess whether proteins expressed at different times during Drosophila development vary systematically in their rates of evolution. We find that proteins expressed early in development and particularly during mid–late embryonic development evolve unusually slowly. In addition, proteins expressed in adult males show an elevated evolutionary rate. These two trends are independent of each other and cannot be explained by peculiar rates of mutation or levels of codon bias. Moreover, the observed patterns appear to hold across several functional classes of genes, although the exact developmental time of the slowest protein evolution differs among each class. We discuss our results in connection with data on the evolution of development.This revised article was published online in June 2005 with the final version of the content.Jerel C. Davis and Onn Brandman contributed equally to this work. Reviewing Editor: ManYuan Long  相似文献   

17.
Summary The effect of anaerobiosis and aerobic recovery on the degree of binding of glycolytic enzymes to the particulate fraction of the cell was studied in the foot muscle of the marine molluscP. caerulea, in order to assess the role of glycolytic enzyme binding in the metabolic transition between aerobic and anoxic states. Short periods of anoxia (2 h, 4 h) resulted in an increase in enzyme binding in association with the increased glycolytic rate observed; this was particularly pronounced for phosphorylase, phosphofructokinase, aldolase, pyruvate kinase and lactate dehydrogenase. Decreased enzyme binding was observed after prolonged periods of anoxia. These effects were reversed and control values re-established when animals were returned to aerobic conditions. The results suggest that glycolytic rate could be regulated by changes in the distribution of glycolytic enzymes between free and bound forms inP. caerulea foot muscle. This reversible interaction of glycolytic enzymes with structural proteins may constitute an additional mechanism for metabolic control.  相似文献   

18.
Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.  相似文献   

19.
More than 100 sequenced genomes were searched for genes coding for the enzymes involved in glycolysis in an effort to find the most frequently occurring ones. Triosephosphate isomerase (TIM), glyceraldehyde-3-phosphate dehydrogenase (GAPD), phosphoglycerate kinase (PGK) and enolase (ENOL) were found to be present in 90 investigated genomes all together. The final set consisted of 80 prokaryotic and 10 eukaryotic genomes. Of the 80 prokaryotic genomes, 73 were from Bacteria, 7 from Archaea. Two microbial genomes were also from Eucarya (yeasts). Eight genomes of nonmicrobial origin were included for comparison. The amino acid sequences of TIMs, GAPDs, PGKs and ENOLs were collected and aligned, and their individual as well as concatenated evolutionary trees were constructed and discussed. The trees clearly demonstrate a closer relatedness between Eucarya and Archaea (especially the concatenated tree) but they do not support the hypothesis that eukaryotic glycolytic enzymes should be closely related to their alpha-proteobacterial counterparts. Phylogenetic analyses further reveal that although the taxonomic groups (e.g., alpha-proteobacteria, gamma-proteobacteria, firmicutes, actinobacteria, etc.) form their more or less compact clusters in the trees, the inter-clade relationships between the trees are not conserved at all. On the other hand, several examples of conservative relatedness separating some clades of the same taxonomic groups were observed, e.g., Buchnera along with Wigglesworthia and the rest of gamma-proteobacteria, or mycoplasmas and the rest of firmicutes. The results support the view that these glycolytic enzymes may have their own evolutionary history.  相似文献   

20.
Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdkpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdkpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdkpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号