首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal ischemia-reperfusion has been implicated in the systemic inflammatory response and organ injury in hemorrhagic shock, but the exact role of the intestine has never been directly demonstrated. Preconditioning (PC) with brief periods of intermittent ischemia is a known potent anti-ischemic intervention and thus can be used as a tool to assess the role of local intestinal ischemia-reperfusion injury in systemic inflammatory response. Thus rats were first subjected to sham surgery or intestinal preconditioning with four cycles of 1-min ischemia and 10 min of reperfusion 24 h before hemorrhagic shock followed by resuscitation. PC reduced fluid requirements, lung edema, and lactate and tumor necrosis factor-alpha production. These effects were abolished by the heme-oxygenase-1 (HO-1) inhibitor tin protoporphyrin (Sn-PP). PC induced more than fivefold in intestinal HO-1 expression. These results suggest that intestinal ischemia-reperfusion is a major trigger for inflammatory response and organ injury in nonseptic shock. HO-1 appears to play an important role in the protective effect of intestinal preconditioning.  相似文献   

2.
Intestinal ischemia-reperfusion injury is dependent on complement. This study examines the role of the alternative and classic pathways of complement and IgM in a murine model of intestinal ischemia-reperfusion. Wild-type animals, mice deficient in complement factor 4 (C4), C3, or Ig, or wild-type mice treated with soluble complement receptor 1 were subjected to 40 min of jejunal ischemia and 3 h of reperfusion. Compared with wild types, knockout and treated mice had significantly reduced intestinal injury, indicated by lowered permeability to radiolabeled albumin. When animals deficient in Ig were reconstituted with IgM, the degree of injury was restored to wild-type levels. Immunohistological staining of intestine for C3 and IgM showed colocalization in the mucosa of wild-type controls and minimal staining for both in the intestine of Ig-deficient and C4-deficient mice. We conclude that intestinal ischemia-reperfusion injury is dependent on the classic complement pathway and IgM.  相似文献   

3.
Neutrophil activation and tumor necrosis factor-alpha (TNF-alpha) induction play a critical role in ischemia-reperfusion-induced intestinal inflammation. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, has recently been implicated as a regulator of inflammatory responses. The aim of the present study was to determine whether pioglitazone, a specific PPAR-gamma ligand, can ameliorate reperfusion-induced intestinal injury in rats, and whether the agent can inhibit the increase in neutrophil accumulation associated with TNF-alpha expression. Intestinal damage was induced in male Sprague-Dawley rats by clamping the superior mesenteric artery for 30 min followed by reperfusion. Reperfusion after 30 min ischemia resulted in an increase in luminal protein concentrations with levels reaching a maximum after 60 min of reperfusion. In contrast, pretreatment with pioglitazone 2 h before ischemia inhibited the increase in luminal protein concentrations after 60 min reperfusion in a dose-dependent manner (1-30 mg/kg). The increase in tissue-associated myeloperoxidase activity, an index of neutrophil infiltration, after reperfusion was significantly inhibited by pretreatment with pioglitazone. Pioglitazone also inhibited increases in intestinal TNF-alpha protein and mRNA expression determined by ELISA and RT-PCR, respectively. In conclusion, activation of PPAR-gamma may represent a novel approach to the treatment of intestinal inflammation induced by ischemia-reperfusion.  相似文献   

4.
Mesenteric ischemia-reperfusion injury is a serious complication of shock. Because activation of nuclear factor-kappaB (NF-kappaB) has been implicated in this process, we treated rats with vehicle or the IkappaB-alpha inhibitor BAY 11-7085 (25 mg/kg ip) 1 h before mesenteric ischemia-reperfusion (45 min of ischemia followed by reperfusion at 30 min or 6 h) and examined the ileal injury response. Vehicle-treated rats subjected to ischemia-reperfusion exhibited severe mucosal injury, increased myeloperoxidase (MPO) activity, increased expression of interleukin-6 and intercellular adhesion molecule 1 protein, and a biphasic peak of NF-kappaB DNA-binding activity during the 30-min and 6-h reperfusion courses. In contrast, BAY 11-7085-pretreated rats subjected to ischemia-reperfusion exhibited less histological injury and less interleukin-6 and intercellular adhesion molecule 1 protein expression at 30 min of reperfusion but more histological injury at 6 h of reperfusion than vehicle-treated rats subjected to ischemia-reperfusion. Studies with phosphorylation site-specific antibodies demonstrated that IkappaB-alpha phosphorylation at Ser(32),Ser(36) was induced at 30 min of reperfusion, whereas tyrosine phosphorylation of IkappaB-alpha was induced at 6 h of reperfusion. BAY 11-7085 inhibited the former, but not the latter, phosphorylation pathway, whereas alpha-melanocyte-stimulating hormone, which is effective in limiting late ischemia-reperfusion injury to the intestine, inhibited tyrosine phosphorylation of IkappaB-alpha. Thus NF-kappaB appears to play an important role in the generation and resolution of intestinal ischemia-reperfusion injury through different activation pathways.  相似文献   

5.
Intestinal ischemia/reperfusion (I/R) is a critical and triggering event in the development of distal organ dysfunction, frequently involving the lungs. Respiratory failure is a common cause of death and complications after intestinal I/R. In this study we investigated the effects of edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) on the prevention of lung injury induced by intestinal I/R in rats. Edaravone has been used for protection against I/R injury in patients with cerebral infarction. When rats were subjected to 180 min of intestinal ischemia, a high incidence of mortality was observed within 24 h. In this situation, intravenous administration of edaravone just before the start of reperfusion reduced the mortality in a dose-dependent manner. To examine the efficacy of edaravone on the lung injury induced by intestinal I/R in more detail, we performed 120 min of intestinal ischemia followed by 120 min of reperfusion. Edaravone treatment decreased the neutrophil infiltration, the lipid membrane peroxidation, and the expression of proinflammatory cytokine interleukin-6 mRNA in the lungs after intestinal I/R compared to the I/R-treated rat lungs without edaravone treatment. Histopathological analysis also indicated the effectiveness of edaravone. In conclusion, edaravone ameliorated the lung injury induced by intestinal I/R, resulting in a reduction in mortality.  相似文献   

6.
The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) may contribute to the pathophysiology of intestinal injury induced by ischemia-reperfusion. The aim of the present study was to examine the effect of selective iNOS inhibition by a cyclic amidine analogue, ONO-1714, on reperfusion-induced small intestinal injury and inflammation in rats. Intestinal damage was induced in male Sprague-Dawley rats by clamping both the superior mesenteric artery and the celiac trunk for 30 min, followed by reperfusion. The luminal nitrite concentration in the small intestine was measured by Griess reaction and the iNOS mRNA expression by RT-PCR. The severity of the intestinal mucosal injury and inflammation were evaluated by several biochemical markers and by the histological findings. The rats which were killed after ischemia-reperfusion had increased luminal concentrations of nitrite and iNOS mRNA expression, in addition to severe intestinal inflammation characterized by significant increases in myeloperoxidase activity, a marker of neutrophil infiltration, and by the mucosal content of CINC-1 cytokine, a neutrophil chemotactic cytokine. Administration with ONO-1714 significantly inhibited the luminal NO production. Reperfusion after 30-min ischemia resulted in an increase in luminal protein and hemoglobin concentrations, with levels reaching a maximum after 60 min of reperfusion. In contrast, pre-treatment with ONO-1714 2h before the ischemia inhibited the increases in luminal protein and hemoglobin concentration in a dose-dependent manner (0.001-0.1mg/kg). The contents of the thiobarbituric acid-reactive substances (a marker of oxidative lipid peroxidation) were significantly increased by ischemia-reperfusion, and this increase was reduced by ONO-1714. After reperfusion, the increase in tissue-associated myeloperoxidase activity, an index of neutrophil infiltration, was significantly inhibited by pre-treatment with ONO-1714. ONO-1714 also inhibited increases in intestinal CINC-1 protein and mRNA expression, as determined by ELISA and RT-PCR, respectively. In conclusion, the improvement of reperfusion-induced intestinal injury by ONO-1714 suggested that an excess of NO, produced by iNOS, may have contributed to the initiation/amplification of intestinal inflammatory injury by various mechanisms, including nitrosative and oxidative damage as well as the enhancement of inflammatory cytokine release.  相似文献   

7.
Gut mucosal injury observed during ischemia-reperfusion is believed to trigger a systemic inflammatory response leading to multiple organ failure. It should be interesting to demonstrate this relationship between gut and multiple organ failure in a sepsis model. Intestinal preconditioning (PC) can be used as a tool to assess the effect of intestinal ischemia in inflammatory response after LPS challenge. The aim of this study was to investigate the protective effect of PC against LPS-induced systemic inflammatory and intestinal heme oxygenase-1 (HO-1) expression. ES was performed with LPS (10 mg/kg iv) with or without PC, which was done before LPS. Rats were first subjected to sham surgery or PC with four cycles of 1 min ischemia and 4 min of reperfusion 24 h before LPS challenge or saline administration. PC significantly reduced fluid requirements, lung edema, intestinal lactate production, and intestinal injury. Inflammatory mRNA expressions for intestine and lung ICAM and TNF were significantly reduced after PC, and these effects were significantly abolished by zinc-protoporphyrin (a specific HO-1 activity inhibitor) and mimicked by bilirubin administration. Intestinal PC selectively increased HO-1 mRNA expression in intestine, but we have observed no expression in lungs. These findings demonstrate that intestinal injury is a important event for inflammatory response and multiple organ injury after LPS challenge. Intestinal HO-1 expression attenuates LPS-induced multiple organ failure by modulating intestine injury and its consequences on inflammatory response. Identification of the exact mechanisms responsible for intestine HO-1 induction may lead to the development of new pharmacological interventions.  相似文献   

8.
The aim of this study was to evaluate the effect of ( - )-epigallocatechin-3-gallate (EGCG), a natural antioxidant, on liver and lungs after warm intestinal ischemia/reperfusion (I/R). Thirty male Wistar rats were equally divided into a sham-operation group, an intestinal I/R group and an intestinal I/R group pretreated with EGCG intraperitoneally. Intestinal ischemia was induced by occlusion of the superior mesenteric artery for 60 min followed by reperfusion for 120 min. Immediately after reperfusion, liver, lung and blood samples were collected and analyzed. Results showed that intestinal I/R increased the levels of aspartate (AST) and alanine (ALT) transaminase in serum to 987 and 752 IU/l, respectively. Malondialdehyde (MDA) increased in liver to 1.524 nmol/g in the group subjected to intestinal I/R compared to 0.995 nmol/g in the sham operation group. MDA was also increased in lungs to 1.581 nmol/g compared to 0.896 nmol/g in the sham operation group. Myeloperoxidase (MPO) increased in liver, after intestinal I/R, to 5.16 U/g compared to 1.59 U/g in the sham operation group. MPO was also increased in lungs to 3.89 U/g compared to 1.65 U/g in the sham operation group. Pretreatment with EGCG decreased serum levels of AST and ALT to 236 and 178 IU/l, respectively. It also decreased mean MDA levels in liver and lungs to 1.061 and 1.008 nmol/g, respectively, and mean MPO levels in liver and lungs to 1.88 and 1.71 U/g, respectively. Light microscopy and transmission electron microscopy examinations showed significant alteration in liver and lungs and protection of liver and lung parenchyma in the animals treated with EGCG.  相似文献   

9.
The involvement of nitric oxide in ischemia-reperfusion injury remains controversial and has been reported to be both beneficial and deleterious, depending on the tissue and model used. This study evaluated the effects of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) and the substrate for nitric oxide synthase, L-arginine on skeletal muscle necrosis in a rat model of ischemia-reperfusion injury. The rectus femoris muscle in male Wistar rats (250 to 500 g) was isolated on its vascular pedicle and subjected to 4 hours of complete arteriovenous occlusion. The animals were divided into five groups: (1) sham-raised control, no ischemia, no treatment (n = 6); (2) 4 hours of ischemia (n = 6); (3) vehicle control, 4 hours of ischemia + saline (n = 6); (4) 4 hours of ischemia + L-arginine infusion (n = 6); and (5) 4 hours of ischemia + L-NAME infusion (n = 6). The infusions (10 mg/kg) were administered into the contralateral femoral vein beginning 5 minutes before reperfusion and during the following 30 to 45 minutes. Upon reperfusion, the muscle was sutured in its anatomic position and all wounds were closed. The percentage of muscle necrosis was assessed after 24 hours of reperfusion by serial transections, nitroblue tetrazolium staining, digital photography, and computerized planimetry. Sham (group 1) animals sustained baseline necrosis of 11.9 +/- 3.0 (percentage necrosis +/- SEM). Four hours of ischemia (group 2) significantly increased necrosis to 79.2 +/- 1.4 (p < 0.01). Vehicle control (group 3) had no significant difference in necrosis (81.17 +/- 5.0) versus untreated animals subjected to 4 hours of ischemia (group 2). Animals treated with L-arginine (group 4) had significantly reduced necrosis to 34.6 +/- 7.5 versus untreated (group 2) animals (p < 0.01). Animals infused with L-NAME (group 5) had no significant difference in necrosis (68.2 +/- 6.7) versus untreated (group 2) animals. L-Arginine (nitric oxide donor) significantly decreased the severity of muscle necrosis in this rat model of ischemia-reperfusion injury. L-arginine is known to increase the amount of nitric oxide through the action of nitric oxide synthase, whereas L-NAME, known to inhibit nitric oxide synthase and decrease nitric oxide production, had comparable results to the untreated 4-hour ischemia group. These results suggest that L-arginine, presumably through nitric oxide mediation, appears beneficial to rat skeletal muscle subjected to ischemia-reperfusion injury.  相似文献   

10.
Cardiac ischemia--reperfusion injury results in oxidative stress and poor physiological recovery. This study examined the amount of lipid and protein oxidation during ischemia-reperfusion to assess the degree of oxidative stress. Selenium supplementation was used to alter the antioxidant status of rats and the recovery of myocardial function post ischemia-reperfusion was investigated. Male Wistar rats were fed diets containing 0, 50, and 1000 microg/kg sodium selenite for 5 weeks, whilst controls received normal rat food containing 240 microg/kg selenium. Langendorff-perfused hearts were subjected to 22.5 min global ischemia and 45 min reperfusion, with functional recovery assessed. Heart tissues were assayed for the presence of lipid peroxides and protein carbonyls and correlated to cardiac recovery. Following ischemia and reperfusion there was a significant increase in both protein oxidation and lipid peroxidation. Hearts from selenium-deficient animals demonstrated higher levels of both protein carbonyls and lipid peroxides and were more susceptible to ischemia-reperfusion injury when compared to controls (38% versus 47% recovery of rate pressure product (RPP)). Selenium supplementation lowered the levels of protein carbonyls and lipid peroxides and resulted in improved recovery of cardiac function post ischemia-reperfusion (57% recovery of RPP). These data suggest that selenium supplementation may provide an effective method for reducing oxidative damage post cardiac ischemia-reperfusion.  相似文献   

11.
目的:通过检测血清TNF-α,IL-6的变化,评价乌司他丁对小肠缺血再灌注损伤的保护作用及机制。方法i健康Wistar大鼠84只,通过夹闭肠系膜上动脉(SMA)60min制作肠缺血模型,随机分成假手术组(C),肠缺血再灌注组(I),UTI治疗组(u)。根据缺血后再灌注时间不同又将I组和U组分成0min、2h和6h组。I组、U组于手术前经尾静脉分别注入生理盐水2mL、乌司他丁5×10^4U/kg,假手术组仅分离SMA,不夹闭血管。于各时点取腹主动脉血测定血清TNF-α、IL-6含量。结果:肠缺血再灌注各时相点均引起血清TNF-α、IL-6的变化,与假手术组相比,各时点TNF-α值显著升高(P〈0.01),IL-6显著升高(P〈0.01)。u组0min、2h血清TNF-α值低于相应时点的I组(P〈0.01);U组0min、2h、6h血清IL-6值低于相应时点的I组(P〈0.05)。结论:乌司他丁可减轻小肠缺血再灌注后的炎症反应。  相似文献   

12.
In ischemia-reperfusion (I/R)-induced tissue injury, oxygen radicals can be generated by several mechanisms. One of the important sources of oxygen radicals is thought to be mitochondrial respiration. The aim of this study was to investigate the antioxidative defense effect of the mitochondrial electron transport inhibitor, rotenone using the I/R-induced rat intestinal mucosal injury model in vivo. Intestinal ischemia was induced for 30 min by applying a small clamp to the superior mesenteric artery in rats. Rotenone at a dose of 100 mg/kg was given to rats orally 2 h before the ischemia. Intraluminal hemoglobin and protein levels, the mucosal content of thiobarbituric acid-reactive substances (TBARS), the mucosal myeloperoxidase activity, and the content of inflammatory cytokines (CINC-1, TNF-alpha) were all significantly increased from mean basal levels after 60 min of reperfusion. These increases after I/R were inhibited by treatment with rotenone at a dose of 100 mg/kg. Co-administration with succinate (100 mg/kg), a substrate of the mitochondrial electron transport system, cancelled significant reduction of intraluminal hemoglobin and mucosal TBARS treated with rotenone alone. The results of the present study indicate that rotenone inhibited lipid peroxidation and reduced development of the intestinal mucosal inflammation induced by I/R in rats. This investigation suggests that rotenone has potential as a new therapeutic agent for reperfusion injury.  相似文献   

13.
The underlying mechanisms of lung endothelial injury after intestinal ischemia-reperfusion (I/R) injury are not fully known. Here we investigated the effects of posttreatment with a neutrophil elastase inhibitor (NEI; ONO-5046) on lung injury after intestinal I/R injury in a rat model. Intestinal I/R was produced by 90 min of ischemia followed by either 60 or 240 min of reperfusion. For all experimental groups, the endothelial permeability index increased, neutrophil H(2)O(2) production increased in the pulmonary vasculature blood, neutrophil counts increased in bronchoalveolar lavage fluid (BALF), and the cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-3 levels were increased in BALF after 240 min (P < 0.01). In rats treated with NEI from 60 min after reperfusion, the lung endothelial permeability index was significantly reduced (P < 0.05), whereas neutrophil H(2)O(2) production in pulmonary vasculature blood and neutrophil count in BALF were significantly suppressed by NEI (P < 0.05 and P < 0.01, respectively). In addition, NEI significantly suppressed the increase of CINC-1 and CINC-3 levels in BALF (P < 0.05). Our study clearly indicates that posttreatment with NEI reduces neutrophil activation in the pulmonary vessels and neutrophil accumulation in the lungs and suggests that ONO-5046, even when administered after the primary intestinal insult, can prevent the progression of lung injury associated with intestinal I/R.  相似文献   

14.
Clinical studies have reported that the incidence and severity of myocardial infarction is significantly greater in diabetics compared with nondiabetics after correction for all other risk factors. The majority of studies investigating the pathophysiology of myocardial ischemia-reperfusion injury have focused on otherwise healthy animals. At present, there is a paucity of experimental investigations on the pathophysiology of heart failure in diabetic animals. We hypothesized that the severity of myocardial reperfusion injury and the development of congestive heart failure would be markedly enhanced in the db/db diabetic mouse. Accordingly, we studied the effects of varying durations of in vivo myocardial ischemia and reperfusion on the incidence of heart failure in db/db diabetic mice. Nondiabetic and db/db diabetic mice (10 wk of age) were subjected to 30, 45, or 60 min of left coronary artery occlusion and 28 days of reperfusion. Survival at 24 h of reperfusion was 100% in nondiabetic mice subjected to 30 min of myocardial ischemia and 88% in nondiabetic mice subjected to 45 min of myocardial ischemia. In contrast, survival was 53% in db/db diabetic mice subjected to 30 min of myocardial ischemia and 44% in db/db mice after 45 min of myocardial ischemia. Prolonged survival in nondiabetic mice was not significantly attenuated when compared during the 28-day follow-up period with all groups experiencing >90% survival. Prolonged survival was significantly decreased in db/db mice after both 30 and 45 min of myocardial ischemia compared with sham controls. Furthermore, we observed a significant degree or left ventricular dilatation, cardiac hypertrophy, and cardiac contractile dysfunction in db/db mice subjected to 45 min of myocardial ischemia and 28 days reperfusion. In nondiabetic mice subjected to 45 min of myocardial ischemia, we failed to observe any changes in left ventricular dimensions or fractional shortening. These studies provide a feasible experimental model system for the investigation of heart failure secondary to acute myocardial infarction in the db/db diabetic mouse.  相似文献   

15.
The in vivo effect of 48-h glucocorticoid and thyroid hormone 3,3', 5-triiodine-L-thyronine (T(3)) pretreatment on alveolar epithelial fluid transport was studied in adult rats. An isosmolar 5% albumin solution was instilled, and alveolar fluid clearance was studied for 1 h. Compared with controls, dexamethasone pretreatment increased alveolar fluid clearance by 80%. T(3) pretreatment stimulated alveolar fluid clearance by 65%, and dexamethasone and T(3) had additive effects (132%). Propranolol did not inhibit alveolar fluid clearance in either group, indicating that stimulation was not secondary to endogenous beta-adrenergic stimulation. With the use of bromodeoxyuridine in vivo labeling, there was no evidence of cell proliferation. Alveolar fluid clearance was partially inhibited by amiloride in all groups. Fractional amiloride inhibition was greater in dexamethasone- and dexamethasone-plus-T(3)-pretreated rats than in control animals, but less in T(3)-pretreated rats. In summary, pretreatment with dexamethasone, T(3), or both in combination upregulate in vivo alveolar fluid clearance similarly to short-term beta-adrenergic stimulation. The effects are mediated partly by increased amiloride-sensitive Na(+) transport, because the stimulated alveolar fluid clearance was more amiloride sensitive than in control rats. These observations may have clinical relevance because glucocorticoid therapy is commonly used with acute lung injury.  相似文献   

16.
目的探讨中介素1-53对大鼠肺缺血再灌注损伤后核因子-κB(NF-κBp65)和细胞因子诱导的中性粒细胞趋化物(CINC-1)蛋白表达的影响。方法将健康Wistar大鼠54只随机分为手术对照组(C组)、缺血再灌注组(IR组)、中介素干预组(D组)。每组分别在缺血45min,再灌注60min、120min 3个时点处死6只大鼠,观察肺组织病理形态变化,测定肺组织湿干质量比值(W/D)、髓过氧化物酶(MPO)活性,肺组织匀浆CINC-1蛋白含量及NF-κBp65蛋白的表达。结果 IR组的W/D值、MPO活性、NF-κBp65和CINC-1的蛋白表达均高于C组,中介素1-53干预后各值较IR组有所下降;D组肺组织病理学变化较IR组明显减轻。结论中介素1-53的应用可以减轻肺缺血再灌注损伤,作用机制可能与其抑制NF-κB的活化,降低肺组织CINC的表达,从而减少肺内PMN的浸润密切相关。  相似文献   

17.
Short-term mechanical ventilation with high tidal volume (HVT) causes mild to moderate lung injury and impairs active Na+ transport and lung liquid clearance in rats. Dopamine (DA) enhances active Na+ transport in normal rat lungs by increasing Na+-K+-ATPase activity in the alveolar epithelium. We examined whether DA would increase alveolar fluid reabsorption in rats ventilated with HVT for 40 min compared with those ventilated with low tidal volume (LVT) and with nonventilated rats. Similar to previous reports, HVT ventilation decreased alveolar fluid reabsorption by ~50% (P < 0.001). DA increased alveolar fluid reabsorption in nonventilated control rats (by ~60%), LVT ventilated rats (by approximately 55%), and HVT ventilated rats (by ~200%). In parallel studies, DA increased Na+-K+-ATPase activity in cultured rat alveolar epithelial type II cells (ATII). Depolymerization of cellular microtubules by colchicine inhibited the effect of DA on HVT ventilated rats as well as on Na+-K+-ATPase activity in ATII cells. Neither DA nor colchicine affected the short-term Na+-K+-ATPase alpha1- and beta1-subunit mRNA steady-state levels or total alpha1- and beta1-subunit protein abundance in ATII cells. Thus we reason that DA improved alveolar fluid reabsorption in rats ventilated with HVT by upregulating the Na+-K+-ATPase function in alveolar epithelial cells.  相似文献   

18.
Glutathione peroxidase and thioredoxin reductase are selenocysteine-dependent enzymes that protect against oxidative injury. This study examined the effects of dietary selenium on the activity of these two enzymes in rats, and investigated the ability of selenium to modulate myocardial function post ischemia-reperfusion. Male wistar rats were fed diets containing 0, 50, 240 and 1000 microg/kg sodium selenite for 5 weeks. Langendorff perfused hearts isolated from these rats were subjected to 22.5 min global ischemia and 45 min reperfusion, with functional recovery assessed. Liver samples were collected at the time of sacrifice, and heart and liver tissues assayed for thioredoxin reductase and glutathione peroxidase activity. Selenium deficiency reduced the activity of both glutathione peroxidase and thioredoxin reductase systemically. Hearts from selenium deficient animals were more susceptible to ischemia-reperfusion injury when compared to normal controls (38% recovery of rate pressure product (RPP) vs. 47% recovery of RPP). Selenium supplementation increased the endogenous activity of thioredoxin reductase and glutathione peroxidase and resulted in improved recovery of cardiac function post ischemia reperfusion (57% recovery of RPP). Endogenous activity of glutathione peroxidase and thioredoxin reductase is dependent on an adequate supply of the micronutrient selenium. Reduced activity of these antioxidant enzymes is associated with significant reductions in myocardial function post ischemia-reperfusion.  相似文献   

19.
Intestinal ischemia and reperfusion (I/R) is encountered in various clinical conditions and contributes to multiorgan failure and mortality as high as 60% to 80%. Intestinal I/R not only injures the intestine, but affects remote organs such as the lung leading to acute lung injury. The development of novel and effective therapies for intestinal I/R are critical for the improvement of patient outcome. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) is a cell-permeable compound that has been shown to possess antiinflammatory effects. The objective is to determine that treatment with AICAR attenuates intestinal I/R injury and subsequent acute lung injury (ALI). Male Sprague Dawley rats (275 to 325 g) underwent intestinal I/R injury with blockage of the superior mesenteric artery for 90 min and subsequent reperfusion. At the initiation of reperfusion, vehicle or AICAR (30 mg/kg BW) was given intravenously (IV) for 30 min. At 4 h after reperfusion, blood and tissues were collected for further analyses. Treatment with AICAR significantly decreased the gut damage score and the water content, indicating improvement in histological integrity. The treatment also attenuated tissue injury and proinflammatory cytokines, and reduced bacterial translocation to the gut. AICAR administration after intestinal I/R maintained lung integrity, attenuated neutrophil chemotaxis and infiltration to the lungs and decreased lung levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Inflammatory mediators, lung-inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, were decreased in the lungs and lung apoptosis was significantly reduced after AICAR treatment. These data indicate that AICAR could be developed as an effective and novel therapeutic for intestinal I/R and subsequent ALI.  相似文献   

20.
The contributions of amiloride-sensitive and -insensitive fractions of alveolar fluid clearance in adult ventilated rats were studied under control conditions and after beta-adrenergic stimulation. Rats were instilled with a 5% albumin solution containing terbutaline (10(-4) M) or dibutyryl-cGMP (DBcGMP; 10(-4) M) with or without the cyclic nucleotide-gated cation channel inhibitor l-cis-diltiazem (10(-3) M) and/or amiloride (10(-3) M). Alveolar fluid clearance over 1 h was 18 +/- 2% in controls. In controls, amiloride inhibited 46 +/- 15% of alveolar fluid clearance, whereas l-cis-diltiazem had no inhibitory effect. Terbutaline and DBcGMP stimulated alveolar fluid clearance by 85 +/- 3 and 36 +/- 5%, respectively. Amiloride and l-cis-diltiazem inhibited nearly equal fractions of terbutaline-stimulated alveolar fluid clearance when given alone. Amiloride and l-cis-diltiazem given together inhibited a significantly larger fraction of alveolar fluid clearance in terbutaline-stimulated rats and in DBcGMP-stimulated rats. Based on these data, terbutaline stimulation recruited both amiloride-sensitive and l-cis-diltiazem-sensitive pathways. In contrast, DBcGMP mainly recruited l-cis-diltiazem-sensitive pathways. Therefore, the amiloride-insensitive fraction of Na+-driven alveolar fluid clearance may be partly mediated through cyclic nucleotide-gated cation channels and activated by an increase in intracellular cGMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号