首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary artery endothelial cells (PAEC) were exposed to normoxia or hypoxia (0% O(2)-95% N(2)-5% CO(2)) in the presence and absence of calpain inhibitor I or calpeptin, after which endothelial nitric oxide synthase (eNOS) activity and protein content were assayed. Exposure to hypoxia decreased eNOS activity but not eNOS protein content. Both calpain inhibitor I and calpeptin prevented the hypoxic decrease of eNOS activity. Incubation of calpain with total membrane preparations of PAEC caused dose-dependent decreases in eNOS activity independent of changes in eNOS protein content. Exposure of PAEC to hypoxia also caused time-dependent decreases of heat shock protein 90 (HSP90) that were prevented by calpain inhibitor I and calpeptin. Moreover, the HSP90 content in anti-eNOS antibody-induced immunoprecipitates from hypoxic PAEC lysates was reduced, and repletion of HSP90 reversed the decrease of eNOS activity in these immunoprecipitates. Incubation of PAEC with a specific inhibitor of HSP90 (geldanamycin) mimicked the hypoxic decrease of eNOS activity. These results indicate that the hypoxia-induced reduction in eNOS activity in PAEC is due to a decrease in HSP90 caused by calpain activation.  相似文献   

2.
We investigated possible involvement of the actin cytoskeleton in the regulation of the L-arginine/nitric oxide (NO) pathway in pulmonary artery endothelial cells (PAEC). We exposed cultured PAEC to swinholide A (Swinh), which severs actin microfilaments, or jasplakinolide (Jasp), which stabilizes actin filaments and promotes actin polymerization, or both. After treatment, the state of the actin cytoskeleton, L-arginine uptake mediated by the cationic amino acid transporter-1 (CAT-1), Ca(2+)/calmodulin-dependent (endothelial) NO synthase (eNOS) activity and content, and NO production were examined. Jasp (50-100 nM, 2 h treatment) induced a reversible activation of L-[(3)H]arginine uptake by PAEC, whereas Swinh (10-50 nM) decreased L-[(3)H]arginine uptake. The two drugs could abrogate the effect of each other on L-[(3)H]arginine uptake. The effects of both drugs on L-[(3)H]arginine transport were not related to changes in expression of CAT-1 transporters. Swinh (50 nM, 2 h) and Jasp (100 nM, 2 h) did not change eNOS activities and contents in PAEC. Detection of NO in PAEC by the fluorescent probe 4,5-diaminofluorescein diacetate showed that Swinh (50 nM) decreased and Jasp (100 nM) increased NO production by PAEC. The stimulatory effect of Jasp on NO production was dependent on the availability of extracellular L-arginine. Our results indicate that the state of actin microfilaments in PAEC regulates L-arginine transport and that this regulation can affect NO production by PAEC.  相似文献   

3.
We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l-arginine uptake after an 18-h treatment of cells. These changes in l-arginine transport were not related to the changes in the expression of the CAT-1 transporter. The inhibitory effect of PMA on l-arginine transport was accompanied by a translocation of PKCalpha (a classical PKC isoform) from the cytosol to the membrane fraction, whereas the activating effect of PMA on l-arginine transport was accompanied by full depletion of the expression of PKCalpha in PAEC. A selective activator of Ca(2+)-dependent classical isoforms of PKC, thymeleatoxin (Thy; 100 nM; 1-h and 18-h treatments), induced the same changes in l-arginine uptake and PKCalpha translocation and depletion as PMA. The effects of PMA and Thy on l-arginine transport in PAEC were attenuated by a selective inhibitor of classical PKC isoforms Go 6976 (1 micro M). Phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl (PIP; 5 micro M), which activates novel PKC isoforms, did not affect l-arginine transport in PAEC after 1-h and 18-h treatment of cells. PIP (5 micro M; 1 h) induced the translocation of PKCepsilon (a novel PKC isoform) from the cytosolic to the particulate fraction and did not affect the translocation of PKCalpha. These results demonstrate that classical isoforms of PKC are involved in the regulation of CAT-1 transport activity in PAEC. We suggest that translocation of PKCalpha to the plasma membrane induces phosphorylation of the CAT-1 transporter, which leads to inhibition of its transport activity in PAEC. In contrast, depletion of PKCalpha after long-term treatment with PMA or Thy promotes dephosphorylation of the CAT-1 transporter and activation of its activity.  相似文献   

4.
Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. High levels of plasma homocysteine (HCY) increase oxidative stress and reduce endothelial-dependent relaxation. We determined whether hyperhomocysteinemia-induced endothelial dysfunction is mediated through inhibition of cellular transport of L-arginine. In endothelial cells, HCY had a biphasic effect on arginine transport. HCY treatment for 6 hr increased L-arginine uptake by 34%; however, uptake was decreased by 25% after 24 h. HCY caused membrane hyperpolarization during both 6 and 24 h incubation periods, indicating that the negative charge facilitating arginine uptake was maintained. HCY significantly reduced expression of cellular arginine transporter protein (CAT-1) after 24 h treatment; whereas endothelial nitric oxide synthase (eNOS) protein levels and basal eNOS activity were not altered. Nevertheless, nitric oxide (NO) formation was significantly decreased. The antioxidant ascorbic acid prevented the effect of HCY on arginine transport. HCY induced formation of the peroxynitrite biomarker nitrotyrosine, which was blocked by supplemental L-arginine. HCY treatment of aortic rings caused decreased vasorelaxation to acetylcholine, which was prevented by supplemental arginine. In conclusion, HCY decreased NO formation and induced endothelial dysfunction without altering protein level or basal activity of eNOS, but through decreases in function and protein expression of the CAT-1 transporter. Reduced arginine supply may lead to eNOS uncoupling and generation of superoxide, contributing to HCY-induced oxidative stress.  相似文献   

5.
Angiogenesis is an integral part of both the pulmonary inflammatory response to chronic exposure to cigarette smoke and the lung tissue remodeling associated with cigarette smoke-induced chronic obstructive pulmonary disease (COPD). To investigate the role of angiogenesis in the pathogenesis of COPD, we evaluated the effect of cigarette smoke extract (CSE) on angiogenesis of pulmonary artery endothelial cells (PAEC). Incubation of PAEC with 2.5-10% CSE resulted in a dose-dependent inhibition of endothelial monolayer wound repair. CSE also caused inhibition of tube formation on Matrigel, migration in a Boyden chamber, and proliferation of PAEC. Because calpain, a family of calcium-dependent intracellular proteases, mediates cytoskeletal signaling in endothelial motility, we explored the role of calpain in the CSE-induced inhibition of endothelial angiogenesis. Incubation of CSE resulted in a dose-dependent decrease in calpain activity. Calpain inhibitor-1, a specific inhibitor of calpain, potentiates inhibitory effect of CSE on the endothelial monolayer wound repair, tube formation, cell migration, and cell proliferation. Transfection of PAEC with antisense oligodeoxyribonucleotides of calpastatin, the major endogenous calpain inhibitor, prevented CSE-induced increase in calpastatin protein content and CSE-induced decreases in calpain activity. It also prevented CSE-induced decreases in monolayer wound repair, tube formation, and migration. These results suggest that CSE attenuates angiogenesis of PAEC and the mechanism involves inhibition of calpain. Impaired angiogenesis may impede the repair process in the lungs of cigarette smokers and contribute to the altered structural remodeling observed in the lungs of patients with cigarette smoke-related COPD.  相似文献   

6.
While a specific role for nitric oxide (NO) in inducing the hemodynamic alterations of pregnancy is somewhat controversial, it is widely accepted that excess NO is generated during pregnancy. L-Arginine is the sole precursor for NO biosynthesis. Among several transporters that mediate L-arginine uptake, cationic amino acid transporter-1 (CAT-1) acts as the specific arginine transporter for endothelial NO synthase. The present study was designed to test the hypothesis that, during pregnancy, when arginine consumption by the fetus is significantly increased, compensatory changes in maternal arginine uptake affect the endothelium. Uptake of radiolabeled arginine (L-[3H]arginine) by freshly harvested maternal aortic rings from pregnant rats decreased by 65 and 30% in mid- and late pregnancy, respectively, compared with those obtained from virgin animals. This decrease was associated with a significant increase in endothelial protein nitration (the footprint of peroxynitrite generation), as shown by both Western blotting and immunohistochemistry utilizing anti-nitrotyrosine antibodies, reflecting endothelial damage. Northern blot analysis revealed that steady-state aortic CAT-1 mRNA levels did not change throughout pregnancy, whereas CAT-1 protein abundance was significantly increased, peaking at mid-pregnancy. Protein content of protein kinase C (PKC)-alpha, which was previously shown to decrease CAT-1 activity, increased significantly in the pregnant animals and was associated with a significant increase in CAT-1 phosphorylation. Intraperitoneal injection of alpha-tocopherol, a PKC-alpha inhibitor, prevented the decrease in arginine transport and attenuated protein nitration. In conclusion, aortic arginine uptake is reduced during pregnancy, through posttranslational modulation of CAT-1 protein, presumably via upregulation of PKC-alpha. The aforementioned findings are associated with an increase in protein nitration and, therefore, in selected individuals, may lead to the development of certain forms of endothelial dysfunction, like preeclampsia.  相似文献   

7.
Pregnancy worsens renal function in females with chronic renal failure (CRF) through an unknown mechanism. Reduced nitric oxide (NO) generation induces renal injury. Arginine transport by cationic amino acid transporter-1 (CAT-1), which governs endothelial NO generation, is reduced in both renal failure and pregnancy. We hypothesize that attenuated maternal glomerular arginine transport promotes renal damage in CRF pregnant rats. In uremic rats, pregnancy induced a significant decrease in glomerular arginine transport and cGMP generation (a measure of NO production) compared with CRF or pregnancy alone and these effects were prevented by l-arginine. While CAT-1 abundance was unchanged in all experimental groups, protein kinase C (PKC)-α, phosphorylated PKC-α (CAT-1 inhibitor), and phosphorylated CAT-1 were significantly augmented in CRF, pregnant, and pregnant CRF animals; phenomena that were prevented by coadministrating l-arginine. α-Tocopherol (PKC inhibitor) significantly increased arginine transport in both pregnant and CRF pregnant rats, effects that were attenuated by ex vivo incubation of glomeruli with PMA (a PKC stimulant). Renal histology revealed no differences between all experimental groups. Inulin and p-aminohippurate clearances failed to augment and renal cortical expression of hypoxia inducible factor-1α (HIF-1α) significantly increased in CRF pregnant rat, findings that were prevented by arginine. These studies suggest that in CRF rats, pregnancy induces a profound decrease in glomerular arginine transport, through posttranslational regulation of CAT-1 by PKC-α, resulting in attenuated NO generation. These events provoke renal damage manifested by upregulation of renal HIF-1α and loss of the ability to increase glomerular filtration rate during gestation.  相似文献   

8.
Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the beta-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Galpha(i) ribosylation is an important step in the activation of l-arginine transport by PTX. An activator of adenylate cyclase, forskolin, and an activator of protein kinase A (PKA), Sp-cAMPS, did not affect l-arginine transport in PAEC. In addition, inhibitors of PKA or adenylate cyclase did not change the activating effect of PTX on l-arginine uptake. Long-term treatment with PTX (18 h) induced a 40% decrease in protein kinase C (PKC)-alpha but did not affect the activities of PKC-epsilon and PKC-zeta in PAEC. An activator of PKC-alpha, phorbol 12-myristate 13-acetate, abrogated the activation of l-arginine transport in PAEC treated with PTX. Incubation of PTX-treated PAEC with phorbol 12-myristate 13-acetate in combination with an inhibitor of PKC-alpha (Go 6976) restored the activating effects of PTX on l-arginine uptake, suggesting PTX-induced activation of l-arginine transport is mediated through downregulation of PKC-alpha. Measurements of nitric oxide (NO) production by PAEC revealed that long-term treatment with PTX induced twofold increases in the amount of NO in PAEC. PTX also increased l-[(3)H]citrulline production from extracellular l-[(3)H]arginine without affecting endothelial NO synthase activity. These results demonstrate that PTX increased NO production through activation of l-arginine transport in PAEC.  相似文献   

9.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16+/-0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9+/-0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol.  相似文献   

10.
Solute interactions with membrane proteins can be analyzed by biomembrane affinity chromatography (BAC), previously applied to the human red cell glucose transporter. As a novel example, frontal BAC analysis of interactions between the nucleoside transport inhibitor nitrobenzylthioinosine (NBTI) and immobilized reconstituted nucleoside and glucose transporters from human red cells revealed two binding sites, presumably corresponding to the two transporters. The affinities and amounts of sites were determined by use of a double rectangular hyperbolic equation. The Kd value for NBTI binding to the nucleoside transporter in egg phospholipid proteoliposomes was 0.38 +/- 0.08 nM (22 degrees C, I = 0.16, pH 7.4), lower than previously reported for reconstituted systems. The molar ratio between the amounts of nucleoside transporter sites for NBTI and glucose transporter sites for cytochalasin B was 4.5 +/- 0.6%.  相似文献   

11.
The 190-kDa multidrug resistance protein MRP1 (ABCC1) is a polytopic transmembrane protein belonging to the ATP-binding cassette transporter superfamily. In addition to conferring resistance to various antineoplastic agents, MRP1 is a transporter of conjugated organic anions, including the cysteinyl leukotriene C(4) (LTC(4)). We previously characterized the ATPase activity of reconstituted immunoaffinity-purified native MRP1 and showed it could be stimulated by its organic anion substrates (Mao, Q., Leslie, E. M., Deeley, R. G., and Cole, S. P. C. (1999) Biochim. Biophys. Acta 1461, 69-82). Here we show that purified reconstituted MRP1 is also capable of active transport of its substrates. Thus LTC(4) uptake by MRP1 proteoliposomes was osmotically sensitive and could be inhibited by two MRP1-specific monoclonal antibodies. LTC(4) uptake was also markedly reduced by the competitive inhibitor, S-decyl-glutathione, as well as by the MRP1 substrates 17 beta-estradiol 17-beta-(d-glucuronide), oxidized glutathione, and vincristine in the presence of reduced glutathione. The K(m) for ATP and LTC(4) were 357 +/- 184 microm and 366 +/- 38 nm, respectively, and 2.14 +/- 0.75 microm for 17 beta-estradiol 17-beta-(d-glucuronide). Transport of vincristine required the presence of both ATP and GSH. Conversely, GSH transport was stimulated by vincristine and verapamil. Our data represent the first reconstitution of transport competent purified native MRP1 and confirm that MRP1 is an efflux pump, which can transport conjugated organic anions and co-transport vincristine together with GSH.  相似文献   

12.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

13.
We have previously shown that activation of PKC (protein kinase C) results in internalization of hCAT-1 [human CAT-1 (cationic amino acid transporter 1)] and a decrease in arginine transport [Rotmann, Strand, Martiné and Closs (2004) J. Biol. Chem. 279, 54185-54192]. However, others found increased transport rates for arginine in response to PKC activation, suggesting a differential effect of PKC on different CAT isoforms. Therefore we investigated the effect of PKC on hCAT-3, an isoform expressed in thymus, brain, ovary, uterus and mammary gland. In Xenopus laevis oocytes and human U373MG glioblastoma cells, hCAT-3-mediated L-arginine transport was significantly reduced upon treatment with compounds that activate classical PKC. In contrast, inactive phorbol esters and an activator of novel PKC isoforms had no effect. PKC inhibitors (including the PKCalpha-preferring Ro 31-8280) reduced the inhibitory effect of the PKC-activating compounds. Microscopic analyses revealed a PMA-induced reduction in the cell-surface expression of fusion proteins between hCAT-3 and enhanced green fluorescent protein expressed in X. laevis oocytes and glioblastoma cells. Western-blot analysis of biotinylated surface proteins demonstrated a PMA-induced decrease in hCAT-3 in the plasma membrane, but not in total protein lysates. Pretreatment with a PKC inhibitor also reduced this PMA effect. It is concluded that similar to hCAT-1, hCAT-3 activity is decreased by PKC via reduction of transporter molecules in the plasma membrane. Classical PKC isoforms seem to be responsible for this effect.  相似文献   

14.
Abstract: The effect of a novel neuroprotective compound, NS-7[4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride], on ischemia-induced fodrin breakdown was examined both in vitro and in vivo. The fodrin breakdown was measured by western blot followed by a densitometric analysis. In slices of the rat cerebral cortex, a pronounced fodrin breakdown was observed under hypoxic and hypoglycemic conditions. The enhancement of fodrin breakdown was completely blocked by omission of extracellular Ca2+ and significantly inhibited by calpain inhibitors such as E-64 and calpain inhibitor-I, thereby suggesting that the fodrin breakdown induced by hypoxia/hypoglycemia is due to the activation of Ca2+-stimulated neutral protease calpain. NS-7 (1–30 µ M ) produced a concentration-dependent inhibition of hypoxia/hypoglycemia-induced fodrin breakdown. In rats with unilateral middle cerebral artery occlusion (MCAO), a pronounced fodrin breakdown was observed in the cerebral cortex and striatum, although the time course for the development of the fodrin breakdown was much slower in the cerebral cortex than in the striatum. NS-7 (0.5 mg/kg i.v.), when injected immediately after MCAO, suppressed not only the fodrin breakdown but also the infarction in the cerebral cortex. From these results it is suggested that inhibition of calpain activation is implicated in the neuroprotective action of NS-7.  相似文献   

15.

Background

Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury.

Methods and Results

In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress.

Conclusion

These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.  相似文献   

16.
Adenosine triphosphate (ATP) transporter from rat liver rough endoplasmic reticulum (RER) was solubilized and reconstituted into phosphatidylcholine liposomes. The RER proteoliposomes, resulting from optimizing some reconstitution parameters, had an apparent K(m) value of 1.5 microM and a V(max) of 286 pmol min(-1) (mg protein)(-1) and showed higher affinity for ATP and a lower V(max) value than intact RER (K(m) of 6.5 microM and V(max) of 1 nmol). ATP transport was time- and temperature-dependent, inhibited by 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid, which is known as an inhibitor of anion transporters including ATP transporter, but was not affected by atractyloside, a specific inhibitor of mitochondrial ADP/ATP carrier. The internal and external effects of various nucleotides on the ATP transport were examined. ATP transport was cis-inhibited strongly by ADP and weakly by AMP. ADP-preloaded RER proteoliposomes showed a specific increase of ATP transport activity while AMP-preloaded RER proteoliposomes did not show the enhanced overshoot peak in the ATP uptake plot. These results demonstrate the ADP/ATP antiport mechanism of ATP transport in rat liver RER.  相似文献   

17.
Nitric oxide synthesis depends on the availability of its precursor L-arginine, which could be regulated by the presence of a specific uptake system. In the present report, the characterization of the L-arginine transport system in mouse adrenal Y1 cells was performed. L-arginine transport was mediated by the cationic/neutral amino acid transport system y+L and the cationic amino acid transporter (CAT) y+ in Y1 cells. These Na+-independent transporters were identified by their selectivity for neutral amino acids in both the presence and absence of Na+ and by the effect of N-ethylmaleimide. Transport data correlated to expression of genes encoding for CAT-1, CAT-2, CD-98, and y+LAT-2. A similar expression profile was detected in rat adrenal zona fasciculata. In addition, cationic amino acid uptake in Y1 cells was upregulated by ACTH and/or cAMP with a concomitant increase in nitric oxide (NO) production.  相似文献   

18.
When skin fibroblasts were cultured on fibrillar collagen I gel, we observed rapid degradation of talin, fodrin and ezrin, which are well-known calpain substrates. The protease m-calpain was activated only in cells adhering to fibrillar collagen, whereas micro-calpain was activated in cells adhering to monomeric or fibrillar collagen at the same level. The calpain inhibitor Z-Leu-Leu-aldehyde inhibited degradation of fodrin, but not talin. Degradation of fodrin, alpha-actinin and ezrin was prevented by over-expression of dominant negative m-calpain. However, over-expression of calpastatin, an endogenous calpain inhibitor, had no effect the degradation of these three proteins. These results suggest that m-calpain is responsible for degradation of their membrane proteins via adhesion to fibrillar collagen I gel.  相似文献   

19.
We have reported previously that peroxynitrite stimulates L-arginine release from astrocytes, but the mechanism responsible for such an effect remains elusive. To explore this issue, we studied the regulation of L-[(3)H]arginine transport by either exogenous or endogenous peroxynitrite in glial cells. A 2-fold peroxynitrite-mediated stimulation of l-arginine release in C6 cells was found to be Na(+)-independent, was prevented by 5 mm L-arginine and, although only in the presence of Na(+), was blocked by 5 mm L-alanine or L-leucine. Peroxynitrite-mediated stimulation of L-arginine uptake was trans-stimulated by 10 mm L-arginine and was inhibited in a dose-dependent fashion (k(i) of approximately 40 microm) by the system y(+) inhibitor N-ethylmaleimide in C6 cells. Endogenous production of peroxynitrite in lipopolysaccharide-treated astrocytes triggered an increased L-arginine transport activity without affecting Cat1 l-arginine transporter mRNA levels. However, Western blot analyses of peroxynitrite-treated astrocytes and C6 glial cells revealed a 3-nitrotyrosinated anti-Cat1-immunopositive band, strongly suggesting peroxynitrite-mediated Cat1 nitration. Furthermore, peroxynitrite stimulation of L-arginine release was abolished in fibroblast cells homozygous for a targeted inactivation of the Cat1 gene. Finally, peroxynitrite-triggered L-arginine released from astrocytes was efficiently taken up by neurons in an insert-based co-culture system. These results strongly suggest that peroxynitrite-mediated activation of the Cat1 transporter in glial cells may serve as a mechanism focused to replenish L-arginine in the neighboring neurons.  相似文献   

20.
We previously showed that ornithine was mainly transported via cationic amino acid transporter (CAT)-1 in human retinal pigment epithelial (RPE) cell line, human telomerase RT (hTERT)-RPE, and that CAT-1 was involved in ornithine cytotoxicity in ornithine--aminotransferase (OAT)-deficient cell produced by a OAT specific inhibitor, 5-fluoromethylornithine (5-FMO). We showed here that CAT-1 mRNA expression was increased by ornithne in OAT-deficient RPE cells, which was reversed by an inhibitor of ornithine decarboxylase (ODC), -difluoromethylornithine (DFMO). Polyamines, especially spermine, one of the metabolites of ODC, also enhanced the expression of CAT-1 mRNA. ODC mRNA expression was also increased by ornithine and polyamines, and gene silencing of ODC by siRNA decreased ornithine transport activity and its cytotoxicity. In addition, the mRNA of nuclear protein c-myc was also increased in 5-FMO- and ornithine-treated hTERT-RPE cells, and gene silencing of c-myc prevented the induction of CAT-1 and ODC. Increases in expression of CAT-1, ODC, and c-myc, and the inhibition of these stimulated expression by DFMO were also observed in primary porcine RPE cells. These results suggest that spermine plays an important role in stimulation of mRNA expression of CAT-1, which is a crucial role in ornithine cytotoxicity in OAT-deficient hTERT-RPE cells. ornithine transport; ornithine decarboxylase; c-myc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号