首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of experiments at two tropical locations tested the ability of land hermit crabs Coenobita perlatus (H. Milne Edwards) and Coenobita compressas (H. Milne Edwards) to detect and respond to odors of dead conspecifics. An attraction array compared numbers of crabs attending hidden food odors and dead conspecific odors. Pit experiments tested crab shell-acquisition behaviors at different hidden odors. Bucket experiments confined crabs collected from various categories (feeding crabs, wandering crabs and crabs aggregated at dead conspecific odors) and tested behavioral responses to odors and an empty shell. Land hermit crab behavior at both sites was similar. Crabs were attracted to dead conspecific odors up to 10 times more than to food odors. Crabs attracted to dead conspecifics displayed significantly more shell-acquisition behaviors: touching other crab's shells in an exploratory manner and switching shells if an empty shell was available. In buckets, crabs from each category switched into shells. Results are compared to previous reports of similar shell-seeking behaviors by marine hermit crabs in response to dead conspecific odors. It is suggested that responding to dead conspecific odors for shell source location is an evolutionarily conserved behavior developed before hermit crabs became terrestrial.  相似文献   

2.
Summary We investigated kin recognition by larval wood frogs (Rana sylvatica) in blind laboratory experiments using spatial affinity as a recognition assay. Tadpoles reared with full-sibs displayed a significant preference for familiar full-sibs over unfamiliar non-kin, but failed to discriminate between unfamiliar full-sibs and unfamiliar paternal half-sibs. Tadpoles reared in social isolation (with or without maternal egg jelly) from the two-celled embryonic stage displayed a significant preference for unfamiliar full-sibs over unfamiliar non-kin. Tadpoles reared on a meat diet with their full-sibs: 1) exhibited a significant preference for unfamiliar full-sibs fed meat over unfamiliar non-kin fed meat, 2) failed to discriminate between unfamiliar full-sibs fed lettuce and unfamiliar non-kin fed meat, 3) exhibited a significant preference for unfamiliar non-kin fed meat over unfamiliar non-lin fed lettuce, 4) failed to discriminate between unfamiliar full-sibs fed meat and unfamiliar full-sibs fed lettuce, and 5) displayed a significant spatial preference for odors associated with meat (a familiar food) over odors associated with lettuce (an unfamiliar food). Our results, together with those of Cornell et al. (1989), indicate that the recognition cue of larval R. sylvatica has both genetic and environmental (dietary) components. Our findings establish that previous exposure to maternal egg jelly, kin, or conspecifics is not necessary for the development of kin recognition ability in larval R. sylvatica. Our results are more consistent with the self-learning of recognition cues (a form of phenotype matching) than with a recognition mechanism that involves a genetically fixed recognition template. Finally, our results indicate that increasing similarity between the recognition template and perceived cue does not necessarily result in increasing spatial affinity for kin.  相似文献   

3.
Aquatic prey encounter an array of threat cues from multiple predators and killed conspecifics, yet the vast majority of induced defenses are investigated using cues from single predator species. In most cases, it is unclear if odors from multiple predators will disrupt defenses observed in single-predator induction experiments. We experimentally compared the inducible defenses of the common marine mussel Mytilus edulis to waterborne odor from pairwise combinations of three predators representing two attack strategies. Predators included the sea star, Asterias vulgaris (= Asterias rubens ), and the crabs Carcinus maenas and Cancer irroratus . The mussels increased adductor muscle mass in response to cues from unfed Asterias (a predatory seastar that pulls mussel shells open) and increased shell thickness in response to unfed Carcinus, a predatory crab that crushes or peels shells. However, the mussels did not express either predator specific response when exposed to the combined cues of Asterias and Carcinus , and mussels did not increase shell thickness when exposed to cues from Cancer alone or any pairwise combination of the three predators. Shell closure or 'clamming up' did not occur in response to any predator combination. These results suggest that predator-specific responses to the Asterias and Carcinus are poorly integrated and cannot be expressed simultaneously. Simultaneous cues from multiple predators affect the integration of predator specific defenses and predator odors from functionally similar predators do not necessarily initiate similar defenses. Ultimately, the degree that prey can integrate potentially disparate defenses in a multiple predator environment may have ecological ramifications and represent a seldom explored facet of the evolution of inducible defenses.  相似文献   

4.
Food segregation in three species of portunid crabs   总被引:1,自引:0,他引:1  
Wu  R. S. S.  Shin  P. K. S. 《Hydrobiologia》1997,362(1-3):107-113
Gastric mills of 2,619 specimens of portunid crabs(Portunus pelagicus, P. sanguinolentus andCharybdis feriatus) in Tolo Harbour, Hong Kongwere examined. Of these, 1,498 containedrecognizable food items. A total of 34 food items wereidentified, 10 of which (29.4%) were common to thethree crab species. The principal food items werebivalves, decapods, fish and algae. However, thepercent frequency of occurrence of these food itemsdiffered significantly (ANOVA, p < 0.001) among thecrabs. In addition to these principalfood items, differences were noted in other dietarycategories: P. pelagicusand P. sanguinolentus fed on the brittle starOphiura kinbergi, whereas P.sanguinolentus and C. feriatus fed on detritusand gastropods. The diet of P. sanguinolentuswas found to be more similar to C. feriatus thanto P. pelagicus. Exploitation of different fooditems and selective feeding on common prey may reduceinter-specific competition for natural food resourcesand allow the three portunid crabs to co-exist in thesame habitat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
R. L. Tilney    T. Hecht 《Journal of Zoology》1990,221(2):171-193
The feeding-associated morphological structures of the two Galeichthys species were found to be similar in all respects. Interspecific competition for food was avoided through habitat separation. Habitat preference, as established by dietary analysis and fishing trials, was based on substratum type. Galeichthys feliceps fed over sandy and muddy substrata in marine and estuarine environments, while G. ater fed exclusively over marine reefs. The two species have different caudal fin structures which are probably evolutionary responses to habitat-associated behavioural requirements in the two different environments.
The diets of the two species were investigated and compared using calorific values of prey items. While both species fed predominantly on benthic crustaceans, polychaetes and molluscs, little dietary overlap occurred at the species level. In the estuarine environment, G. feliceps fed mainly on the anomurans Upogebia africana and Calianassa kraussi , crabs Hymenosoma orbiculare and Cleislosoma edwardsii , and several isopod species. In the marine environment G. feliceps fed mainly on two species of crabs, Thaumastoplax spiralis and Goneplax angulata , the echiurid Ochaetostoma capense and the sedentary polychaete Sternaspsis scutata. A high incidence of teleost scales in the diet of G. feliceps juveniles was found to be a consequence of scavenging rather than a lepidophagous habit. Galeichthys ater fed widely on several reef-associated crabs, isopods, polychaetes and cephalopods.  相似文献   

6.
Diet and feeding habits of the smooth dogfish, Mustelus canis, Atlantic sharpnose, Rhizoprionodon terraenovae, dusky, Carcharhinus obscurus, and the sand tiger, Carcharias taurus sharks, were investigated through analysis of stomach contents. Diet in M. canis was relatively homogeneous and was dominated by crustaceans, consisting mostly of rock crabs, Cancer irroratus. Diet in R. terraenovae was more heterogeneous and consisted largely of crustaceans and teleosts, in similar levels of prey importance. Use of cumulative prey curves as a measure of precision indicated that data were insufficient to fully describe the diets of C. obscurus and C. taurus. Nonetheless, these data suggested that both species are generalized feeders and consume a variety of teleost and elasmobranch prey. Further studies are necessary to fully characterize diet in these two species.  相似文献   

7.
Blue crabs are cannibalistic, and therefore the scent of injured conspecifics represents both a potential food cue, as well as an indicator of predation risk. We examined the response of blue crabs to conspecific odor alone, as well as in mixtures of attractive cues to determine how animals evaluate and respond to this odor. We explicitly manipulated risk-sensitivity based on either animal size (an indicator of susceptibility to predation) or hunger state (susceptibility to starvation) as ways to evaluate theories of risk-allocation, which suggest that decreases in predation risk, or increases in the risk of starvation, ought to result in diminished responses to sensory cues that signal predator presence or activity. Large and small blue crabs were challenged to locate the source of odor plumes consisting of the scent of injured conspecifics (risk cue), attractive food odors (attractive cue), or their mixture (conflicting cue). Neither large nor small blue crabs tracked aversive cues, but large blue crabs consistently tracked conflicting treatments to their source. Responses to conflicting and aversive treatments also involved diminished movement and reduced tracking speed relative to behaviors displayed in attractive plumes. Thus, even cannibalistic crabs seem to respond more prevalently to the apparent predation risk then to food reward, and risk-sensitive behaviors have a likely cost in terms of reduced food intake. Starved animals were more likely than unstarved animals to track conflicting plumes. Both the ontogenic shift and the response of starved animals support the notion that the cost of risk-aversive behaviors results in this strategy being allocated in proportion to the degree of potential risk. Since risk-aversive responses to chemical cues can produce strong effects in communities, the size-dependent nature of these responses in blue crabs may introduce considerable complexity in interactions between blue crabs, their predators, and their prey.  相似文献   

8.
Predator-prey interaction between sandy shore crab, Matuta lunaris (Forskål, 1775), and juvenile Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel), was investigated under controlled laboratory conditions. Possibility of training and conditioning hatchery-reared flounder to avoid predators was also examined. Crabs took over 75% of their daily ration at night when they were given access to prey 24 h a day. Large (64.8±5.4 g)- and medium (30.68±3.33 g)-sized crabs ate ca. 5.5±1.45 and 3.9±1.99 individuals of flounder (TL=4.96±0.23 cm) a day, respectively. When flounder juveniles that have experienced predation pressure by crabs encountered predators again, they exhibited better survival compared to the naive fish. Flounder juveniles were also conditioned either using small and, thus, benign predators, or large crabs over fence. The conditioned fish with either method were better able to avoid capture by crabs than naive fish, revealing that learning process should play an important role in their predator avoidance. Anti-predator performance was also compared between starved and fed flounder juveniles. Fed fish were rarely eaten by predators after 3 h of exposure, whereas starved fish continued to be eaten. Our results suggest that stock-enhancement program of Japanese flounder can be improved by applying proper feeding protocol and conditioning to avoid predators prior to release. Present research supports the idea that behavioural and ecological consideration for the target species is indispensable for the success of stock enhancement.  相似文献   

9.
Feeding ability and motivation were assessed in the edible crab, Cancer pagurus, to investigate how the fishery practice of de-clawing may affect live crabs returned to the sea. Crabs were either induced to autotomise one claw, or were only handled, before they were offered food. Initially, autotomised and handled crabs were offered mussels, Mytilis edulis, a large part of their natural diet. After 3 days, both autotomised and handled crabs were then offered fish, a more readily handled food source. Autotomy induced crabs consumed significantly fewer mussels and less mussel mass, but ate significantly more mass of fish. This indicates that the effect of autotomy was a reduction of ability to feed on mussels rather than a general reduction of feeding motivation. The discontinuation of claw removal needs to be considered, both for the sustainability of the fishery and animal welfare concerns.  相似文献   

10.
Synopsis The flatheads, toadfishes, and goosefishes discussed here hold certain features in common. All are bottom-living forms with depressed head areas and broad gapes, and all eat large food items: fishes and/or crabs. All have developed structural specializations in association with this diet. The three groups are at most distantly related, and their feeding specializations are different and have evolved from different bases. In flatheads the combination of large food items and depressed head regions seems to have led to the separation of the two halves of the pelvic girdle, a feature in which they differ from their scorpaenoid relatives. Toadfish peculiarities associated with feeding are various but most notable in those that pass crabs they eat through the gape and into the mouth. Goosefish feeding is centered around the use of a lure to attract prey to within striking distance. The three fish groups are discussed separately, but their feeding structures are compared to one another in the final section of the paper.  相似文献   

11.
Foraging strategies and prey switching in the California sea otter   总被引:2,自引:1,他引:2  
Summary Southern sea otters (Enhydra lutris nereis), in recovering from near extinction, are gradually extending their range to include areas from which they have been absent for more than one hundred years. This study took advantage of the otters' relatively sudden arrival in the area near Santa Cruz, California, to monitor their prey selection in the first two years of residence there. Foraging observations revealed that sea urchins (Strongly-locentrotus franciscanus) were heavily preyed upon initially, but virtually disappeared from the diet after one year of sea otter residence. The disappearance of sea urchins was accompanied by an increased use of kelp crabs (Pugettia producta) and the appearance of clams (Gari californica) in the otters' diet. Abalones (Haliotis rufescens) and cancer crabs (Cancer spp.) remained fairly stable as dietary items throughout the two year period. An electivity index was used to quantify sea otter preferences, which corresponded closely with a ranking scheme based on energy intake/unit foraging time calculated for each major prey species. As predicted by optimal foraging theory, sea otters prefer food species of high rank and replace depleted dietary items with those of next highest rank. The process of dietary switching was analyzed with respect to foraging success rates, and it appears that poor success rates, associated with predation on an increasingly rarer prey species (sea urchins), drive sea otters to hunt for different prey. Both patch selection and search image formation appear to function in this process. The potential effects on community structure and stability of predators exhibiting a preference for the most profitable prey are discussed.  相似文献   

12.
Studies of kin recognition in birds have largely focused on parent-offspring recognition using auditory or visual discrimination. Recent studies indicate that birds use odors during social and familial interactions and possibly for mate choice, suggesting olfactory cues may mediate kin recognition as well. Here, we show that Humboldt penguins (Spheniscus humboldti), a natally philopatric species with lifetime monogamy, discriminate between familiar and unfamiliar non-kin odors (using prior association) and between unfamiliar kin and non-kin odors (using phenotype matching). Penguins preferred familiar non-kin odors, which may be associated with the recognition of nest mates and colony mates and with locating burrows at night after foraging. In tests of kin recognition, penguins preferred unfamiliar non-kin odors. Penguins may have perceived non-kin odors as novel because they did not match the birds' recognition templates. Phenotype matching is likely the primary mechanism for kin recognition within the colony to avoid inbreeding. To our knowledge this is the first study to provide evidence of odor-based kin discrimination in a bird.  相似文献   

13.

Background

In group-living animals, social interactions and their effects on other life activities such as foraging are commonly determined by discrimination among group members. Accordingly, many group-living species evolved sophisticated social recognition abilities such as the ability to recognize familiar individuals, i.e. individuals encountered before. Social familiarity may affect within-group interactions and between-group movements. In environments with patchily distributed prey, group-living predators must repeatedly decide whether to stay with the group in a given prey patch or to leave and search for new prey patches and groups.

Methodology/Principal Findings

Based on the assumption that in group-living animals social familiarity allows to optimize the performance in other tasks, as for example predicted by limited attention theory, we assessed the influence of social familiarity on prey patch exploitation, patch-leaving, and inter-patch distribution of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. P. persimilis is highly specialized on herbivorous spider mite prey such as the two-spotted spider mite Tetranychus urticae, which is patchily distributed on its host plants. We conducted two experiments with (1) groups of juvenile P. persimilis under limited food on interconnected detached leaflets, and (2) groups of adult P. persimilis females under limited food on whole plants. Familiar individuals of both juvenile and adult predator groups were more exploratory and dispersed earlier from a given spider mite patch, occupied more leaves and depleted prey more quickly than individuals of unfamiliar groups. Moreover, familiar juvenile predators had higher survival chances than unfamiliar juveniles.

Conclusions/Significance

We argue that patch-exploitation and -leaving, and inter-patch dispersion were more favorably coordinated in groups of familiar than unfamiliar predators, alleviating intraspecific competition and improving prey utilization and suppression.  相似文献   

14.
Blue crabs, Callinectes sapidus (Rathbun), are an ecologically and commercially important species along the East coast of North America. Over the past century and a half, blue crabs have been exposed to an expanding set of exotic species, a few of which are potential competitors. To test for interactions with invasive crabs, juvenile C. sapidus males were placed in competition experiments for a food item with two common non-indigenous crabs, the green crab Carcinus maenas (L.) and the Japanese shore crab, Hemigrapsus sanguineus (De Haan). Agonistic interactions were evaluated when they occurred. In addition, each species’ potential to resist predators was examined by testing carapace strength. Results showed that C. maenas was a superior competitor to both C. sapidus and H. sanguineus for obtaining food, while the latter two species were evenly matched against each other. Regarding agonism, C. sapidus, was the “loser” a disproportionate number of times. C. sapidus carapaces also had a significantly lower breaking strength. These experiments suggest that both as a competitor, and as potential prey, juvenile blue crabs have some disadvantages compared with these common sympatric exotic crab species, and in areas where these exotics are common, juvenile native blue crabs may be forced to expend more energy in conflict that could be spent foraging, and may be forced away from prime food items toward less optimum prey.  相似文献   

15.
The responses of the burrowing bivalves Macoma balthica and Cerastoderma edule to chemical cues emitted by feeding shore crabs Carcinus maenas were investigated. M. balthica held in the laboratory and exposed to chemical signals in effluent water discharging from tanks containing C. maenas fed 20 M. balthica day− 1 reacted by increasing their burial depths from approximately 30 mm to depths of > 60 mm, over a period of several days. When the signal was removed the bivalves gradually returned to their original depth over 5 days. C. edule similarly exposed to effluent from crabs feeding on conspecifics showed no response. In an attempt to identify the signal inducing this burrowing response, M. balthica were exposed to a variety of chemical signals. Crabs fed M. balthica elicited the strongest response, followed by crabs fed C. edule. There were also small responses to effluent from crabs fed on fish, crabs previously fed on M. balthica and to crab faeces, but no responses to starved crabs, crushed M. balthica, or controls. We conclude that increased burrowing depth of M. balthica is induced by some as yet unidentified chemical cue produced by feeding crabs and is strongest when the crabs were fed on M. balthica. Unexpectedly, neither the presence of crabs themselves, nor of damaged conspecifics, was effective in eliciting a burrowing response. The mortality rates of M. balthica and C. edule selected by crabs when burrowed at normal depths and after exposure to effluent from feeding crabs were different. Crabs selected 1.5 times more C. edule than M. balthica when both species were burrowed at their normal depths, but 15 times more after the tanks had been exposed to effluent from feeding crabs for 5 days. The burrowing response of M. balthica thus appears to reduce mortality significantly by displacing predation pressure on to the more accessible C. edule.  相似文献   

16.
Weis  Judith S.  Weis  Peddrick 《Hydrobiologia》2004,523(1-3):47-58
We studied the behaviors of four species of sympatric fiddler crabs on Kaledupa Island, Indonesia. Species differences in activity level, grooming, burrowing and feeding were related to their habitat and food. Uca chlorophthalmus, living in muddy mangrove areas, were inactive and spent most of the time feeding in place. Females fed 50% faster than males and spent more time feeding. U. vocans was the dominant species at the beach in silty sand and was very active. Its feeding rate was about twice that of the former species, females fed more rapidly than males, and many crabs of both sexes fed in droves at the water’s edge during ebb tides. During ebb tides, they spent most of their time feeding, while at flood tide they engaged in a greater variety of activities, including burrow maintenance. They frequently walked while feeding and interacted aggressively. U. tetragonon lived in a pebbly band along one edge of the beach, by a quay. Their feeding rate was comparable in both sexes and slower than that of U. vocans; they fed largely on filamentous algae growing on the quay, which provides better food, and fed faster during flood tide than ebb tide. They spent more time in waving and other sex-related activities, and were seldom aggressive, except during the week of the full moon. Burrowing activities included placing excavated mud balls some distance away from their burrows and re-arranging them. U. dussumieri inhabited the other end of the beach in muddier substrate. They did not have sex differences in feeding rates and their rate of scooping food into their mouths was slow, but feeding claws made multiple pinches of the substrate, thus accumulating more material in each clawful of food.  相似文献   

17.
Animals exploiting their familiar food items often avoid spatio-temporal aggregation with others by avoiding scents, less rewarding areas or visual contacts, thereby minimizing competition or interference when resources are replenished slowly in patches. When animals are searching or assessing available food sources, however, they may benefit from reducing sampling costs by following others at food sites. Therefore, animals may adjust their responses to others depending on their familiarity with foraging situations. Here, we conducted field experiments to test whether nectar-collecting bumble bees make this adjustment. We allowed free-foraging bees to choose between two inflorescences, one occupied by a conspecific bee and another unoccupied. When bees were presented with flowers of a familiar type, they avoided occupied inflorescences. In contrast, bees visited an occupied inflorescence when the flower type was unfamiliar. To our knowledge, this is the first report suggesting that animals adjust their responses to feeding conspecifics depending on their familiarity with food sources. Such behavioural flexibilities should allow foragers to both explore and exploit their environments efficiently.  相似文献   

18.
In most shallow water marine systems, fluid movements vary on scales that may influence local community dynamics both directly, through changes in the abundance of species, and indirectly, by modifying important behaviors of organisms. We examined how differences in current speed affect the outcome of predator-prey interactions for two species of marine benthic predators (knobbed whelks, Busycon carica, and blue crabs, Callinectes sapidus) foraging on two common prey species (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria). The predators differ in their foraging strategies and prey in their potential escape responses. Predation by blue crabs, highly mobile predators/scavengers that rely upon chemical odors transported in the water column to locate prey, could be strongly affected by changes in current speed and turbulent mixing because their foraging strategy relies on a high degree of spatial integration of prey odor plumes. Whelks, slow moving, predatory gastropods that often forage with their bodies buried in the sediment, may be less susceptible to flow-induced distortion of prey odor plumes because their sluggish movements result in a high degree of temporal integration of prey odors. Bay scallops, relatively mobile bivalves capable of rapid short-distance swimming burst, and hard clams, sedentary bivalves, have been shown to respond to varying degrees to predator odors that are dispersed in the water column. Flow regime for the predator-prey experiments was manipulated in situ using large channels. Predation by blue crabs on both juvenile hard clams and bay scallops decreased with increases in water flow (0-12 vs. 0-30 cm s−1). Whelk predation on bay scallops increased with increases in water flow, whereas predation by whelks on hard clams did not differ between flow regimes. For blue crabs movement decreased at periods of high water flow. Because blue crabs locate prey through chemolocation of water-borne cues, which are diluted rapidly at higher flows, decreases in foraging may result from the inability to successfully detect prey at enhanced flows. Differences in predation by whelks could not be explained by a similar mechanism. Visual observations of foraging whelks revealed no differences in whelk behavior between the two flow regimes. The pattern of higher whelk predation on scallops at enhanced flow is likely to be related to a flow-inhibiting ability of scallops to detect predator approach. Thus, flow enhancement interferes with three of the predator-prey systems but the effect on predator success depends on whether the predator or prey is most affected.  相似文献   

19.
Metzeling  Leon  Miller  Jessica 《Hydrobiologia》2001,449(1-3):159-170
Experiments were designed to investigate selective predation by medium (40–55 mm carapace width: CW) and large (55–70 mm CW) Carcinus maenas when feeding on four bivalves of contrasting shell morphology. Size-selection was examined by presenting individual crabs with a wide size range of Mytilus edulis, Ostrea edulis, Crassostrea gigas and Cerastoderma edule. Medium-sized crabs preferred mussels 5–15 mm shell length (maximum shell dimension: SL) and cockles 5–10 mm SL, whereas large crabs preferred mussels 15–25 mm and cockles 10–20 mm SL. Crabs generally showed no preference for any particular size of either oyster species. Species-selection was examined by presenting individual crabs with paired combinations of the four bivalves in various proportions. When offered mussels and oysters simultaneously, both size categories of crabs consistently selected mussels, and food choice was independent of prey relative abundance. By contrast, C. maenas selected mussels and cockles as expected by the frequency in which each size category of crab encountered the preferred size ranges of prey. Crab preference clearly paralleled the rank order of prey profitability, which in turn was mainly determined by prey biomass, suggesting that active selection takes place at some point of the predation cycle. Experiments with epoxy resin models showed that initial reluctance of crabs to attack oysters was not associated with the ultimate energy reward. Moreover, they suggest that foraging decisions are partly based on evaluations of overall prey shape and volume, and that the minimum dimension of the shell constitutes an important feature which crabs recognise and associate with prey value.  相似文献   

20.
Non-warning odors trigger innate color aversions--as long as they are novel   总被引:1,自引:0,他引:1  
Warning signals made by unpalatable insects to potential predatorscommonly target more than one sense: such signals are "multimodal." Pyrazines are odors produced by warningly colored insects whenattacked, and have been shown to interact with food coloration,biasing avian predators against novel and typically aposematicfood. However, at present it is not known whether this is anadaptation by prey to exploit a general feature of avian psychology,or an evolutionary response by birds to enhance their avoidanceof unpalatable prey. Here we investigate the effect of otherodors on the innate responses of naive domestic chicks (Gallusgallus domesticus) to food that is of novel color, or of acolor that is associated with warning coloration, yellow. Inthe first experiment, we demonstrate that natural and artificialodors that have no association with aposematism in the wildcan produce biases against both novel colored foods and yellowcolored foods. In a second experiment, we also show that odor novelty is vital for eliciting such effects. These results supportthe idea that warning odors have evolved in response to preexistingpsychological biases against novel odors in predators, ratherthan predators evolving specific responses against odors associatedwith unpalatable prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号