首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在松嫩平原碱化草甸,采用大样本随机取样的方法,研究了不同时间到达抽穗初期、抽穗期、开花期和乳熟期的星星草种群生殖分蘖株数量性状的可塑性及其调节规律.结果表明:除在开花期存在一定的波动外,在每5 d的时间里,随着生殖生长时间的延长, 星星草种群在抽穗初期、抽穗期和乳熟期的生殖分蘖株高、分蘖株生物量、花序长和花序生物量均依次显著增加.各生育期的星星草种群生殖分蘖株高与花序生物量呈显著正相关,而与生殖分配呈显著负相关.随着生殖生长时间的延长,抽穗初期、开花期和乳熟期的星星草花序生物量随着分蘖株高增加,其幂函数的增长速率均呈增大趋势.生殖生长时间延长10 d,其抽穗初期和抽穗期的生殖分配直线下降速率分别降低了43.2%和44.31%;延长5 d,乳熟期的下降速率降低了130%.表明星星草种群分蘖株生殖生长的表型可塑性调节遵循着一定的规律.  相似文献   

2.
Aims Plants can change in phenology and biomass allocation in response to environmental change. It has been demonstrated that nitrogen is the most limiting resource for plants in many terrestrial ecosystems. Previous studies have usually focused on either flowering phenology or biomass allocation of plants in response to nitrogen addition; however, attempts to link flowering phenology and biomass allocation are still rare. In this study, we tested the effects of nitrogen addition on both flowering phenology and reproductive allocation in 34 common species. We also examined the potential linkage between flowering time and reproductive allocation in response to nitrogen addition.Methods We conducted a 3-year nitrogen addition experiment in Tibetan alpine meadow. We measured first flowering date and the reproductive allocation for 34 common plant species in control, low and high nitrogen added plots, respectively. One-way analysis of variance was used to examine differences of first flowering date and reproductive allocation among treatments. The relationships between the change in species first flowering date and change in reproductive allocation in response to nitrogen addition were examined by calculating Pearson correlation coefficients.Important findings For most species, both first flowering date and reproductive allocation significantly responded to nitrogen addition. Nitrogen addition significantly delayed the first flowering date and reduced the reproductive allocation for all graminoid species, but accelerated flowering and increased reproductive allocation for most forb species. We found that changes in first flowering date significantly negatively correlated with the changes in reproductive allocation over species in response to nitrogen, which indicated a positive relationship between flowering response and plant performance in reproductive allocation. Species that advanced their flowering time with nitrogen addition increased their reproductive allocation, whereas those that delayed flowering time tended to decline in reproductive allocation with nitrogen addition. Our results suggest that species-specific switch from vegetative growth to reproductive growth could influence species performance.  相似文献   

3.
We investigated the relationship between flowering time and sexual allocation in wild-type Arabidopsis thaliana and in genetically similar lineages with single-locus mutations of floral induction genes. We examined whether the mechanisms of growth and development that govern resource investment would permit the independent evolution of reproductive phenology and sexual allocation, or whether constraints, manifested as pleiotropic effects of the single mutations, would link these two life-history traits. Flowering times differed significantly among genotypes, and, as expected, later flowering times were associated with larger vegetative size. Later flowering genotypes produced heavier floral parts (larger petals, in particular), and allocated a significantly lower proportion of biomass to androecia, especially in final allocations that included fruit biomass. At least part of this pleiotropic covariation of flowering time and sexual allocation is likely to be mediated by vegetative size and the rate of resource supply to growing reproductive tissues, because the larger fruits of late-flowering genotypes required the same time, or proportionately less time than the difference in biomass, to mature. Because fruit mass is considered an investment in female function, sexual allocation measured at the end of a growing season tends to be highly female biased in angiosperms. We consider the implications of the pleiotropic association of flowering time, vegetative size, and sexual investment for the theory of sex allocation, and suggest that the idiosyncratic phenology of sexual investment in flowering plants creates a departure from a central assumption of Fisher's seminal sex allocation argument.  相似文献   

4.
开花时间决定了植物雌雄功能的交配机会, 最终影响繁殖成功。交配环境假说认为雌雄异熟植物开花时间的差异能引起植物表型性别的变异, 改变种群内的交配环境, 影响植物对雌雄功能的最佳性分配。为了研究开花时间对雌雄异熟植物的雌雄性别时期及表型性别的影响, 本文以毛茛科雄性先熟植物露蕊乌头(Aconitum gymnandrum)为实验材料, 记录了雄性和雌性功能期, 分析了植株开花时间、花的雌雄功能期和表型性别的关系。结果表明: 在植物同一花序内, 较晚开放的花有更长的雄性期和更短的雌性期, 性分配在时间上偏雄。雌雄功能期在时间上的相对分配随植物开花时间的变化表现出相似的趋势: 较晚开的花或较晚开花的个体, 花的雄性功能期相对于雌性功能期更长, 在时间上更偏向雄性功能。而且, 开花时间的差异影响种群内花的性比和植物个体的表型性别动态。随着开花时间由早到晚的变化, 种群内早期以雄花为主,末期以雌花为主, 种群内性别环境由偏雄向偏雌变化, 因此植株个体的平均表型性别则从偏雌转向偏雄。本文结果支持交配环境假说, 雄性先熟的露蕊乌头开花早期, 种群内花的性别比偏雄, 种群表型性别环境偏雄, 因而植物个体平均表型性别偏雌, 性别分配(即时间分配)偏向雌性功能, 而晚开花个体的平均性别偏雄, 更偏向雄性功能的分配。  相似文献   

5.
苏晓磊  曾波  乔普  阿依巧丽  黄文军 《生态学报》2010,30(10):2585-2592
开花物候及繁殖分配是植物适应环境的重要因素,为了解长期冬季水淹对三峡库区耐淹物种秋华柳(Salix variegata Franch.)繁殖的影响,研究了长期冬季水淹条件下秋华柳的开花物候和繁殖分配情况。实验在2006年11月份设置了如下处理:对照,完全水淹(植株置于水中,顶部距水面2m)30,60,90,120d和150d。结果表明:(1)对照及各水淹处理的秋华柳花期都较长,在7-11月份持续开花,个体开花进程(开花振幅曲线)呈单峰曲线。(2)冬季水淹对秋华柳群体及个体的开花物候有显著影响。水淹时间越长,始花期越晚,花期持续时间越短(P0.05)。(3)长期冬季水淹下,秋华柳显著降低了繁殖分配比例和全株生物量及单株花序数(P0.05)。(4)开花物候指数与繁殖分配的相关分析表明:始花时间越晚的个体,花期持续时间越短。花期持续时间越短的个体花序数越少,致使繁殖分配越小。总的来说,冬季水淹下,秋华柳通过推迟开花日期、缩短花期持续时间使繁殖分配比例降低,将更多的资源分配到生存力上,是秋华柳对长期冬季水淹的一种适应。同时,在长期冬季水淹后,秋华柳仍保持一定的开花繁殖能力,是其在应用于三峡水库消落区植被构建后产生后代延续种群的前提条件。  相似文献   

6.
Lolium multiflorum Lam, plants were grown in a growth room undertwo light sources with red/far-red ratios of 1·62 and0·84 but similar photosynthetically active radiation.In both situations the capacity to produce new tillers and thelight available per tiller decreased with canopy growth. Tilleringwas further reduced by the low red/far-red ratio while lightinterception and plant dry weight were unaffected by this treatment.In both reproductive and vegetative plants under the lower red/far-redratio the time between leaf expansion and the appearance ofa tiller in its axil was increased and the proportion of ‘maturebuds’ that developed was reduced. Irradiation with lowred/far-red advanced the reproductive development and increasedthe number of fertile tillers per plant. It also caused longerleaf sheaths, blades and reproductive shoots. The results suggestthat as canopy density increases the lower light interceptionper tiller and the photomorphogenic effect of low red/far-redratios may reduce the capacity to produce new tillers. Lolium multiflorum, Lam., annual ryegrass, tillering, tiller growth, leaf growth, flowering, light quality.  相似文献   

7.
Intrapopulational variation in biomass allocation to male vs. female function was quantified for the hermaphroditic plant Ipomopsis aggregata in terms applicable to sex allocation models. The proportions of flower biomass put into the corolla and calyx averaged 0.59 and 0.20 and were relatively constant across plants. The proportions in the stamens and pistil averaged 0.13 and 0.08, with considerable variation among plants. Phenotypic gender at the time of flowering ranged from 0.34 to 0.77 female. Pistil dry weight was correlated with stigma exsertion. Stamen weight was correlated with corolla width, which influences male pollination success, and was also correlated with anther position and pollen production. Female reproductive success as estimated by seeds per flower showed no detectable relationship with initial allocation of biomass at the time of flowering, but decreased in accelerating fashion with the proportion of final biomass including seeds that was allocated to male function.  相似文献   

8.
孙菊  杨允菲 《生态学报》2008,28(2):500-507
朝鲜碱茅(Puccinellia chinampoensis)是一种耐盐碱丛生型禾草,广泛分布于松嫩平原碱化草甸.采用每隔3d对朝鲜碱茅种群中处于抽穗初期的生殖分蘖株随机挂一次标签,于籽实蜡熟期同时进行大样本取样与测定的方法,定量分析了5次所标记的生殖分蘖株的数量性状的变化规律及生殖分蘖株的生长规律.结果表明,在朝鲜碱茅种群中,虽然抽穗时间只相隔3d,但生殖分蘖株的各数量性状均具有较大的表型可塑性,总的变化趋势是抽穗时间相隔越长,差异越大.其中,5次样本中的相邻平均花序生物量之间的差异均达到了显著水平.延长生殖生长16d,平均分蘖株高增加了23.16%,花序长增加了25.70%,分蘖株生物量增加了74.99%,花序生物量增加到2.63倍,生殖分配增加了93.25%.随着生殖生长时间的延长,朝鲜碱茅种群生殖分蘖株高、分蘖株生物量和花序生物量均呈指数增加,花序长和生殖分配呈直线增加,生殖生长比率呈先增加后降低的抛物线变化.不同时间进入生殖生长阶段的生殖分蘖株均具有相同的生长规律.其中,花序长均随分蘖株高的增加呈指数异速增长,花序生物量均随分蘖株生物量的增加呈直线同速增长.分蘖株的生殖生长越延长,对现实种群的贡献就越大,对未来种群的贡献更大.  相似文献   

9.
Under climate warming, plants will undergo novel selective pressures to adjust reproductive timing. Adjustment between reproductive phenology and environment is expected to be higher in arctic and alpine habitats because the growing season is considerably short. As early- and late-flowering species reproduce under very different environmental conditions, selective pressures on flowering phenology and potential effects of climate change are likely to differ between them. However, there is no agreement on the magnitude of the benefits and costs of early- vs. late-flowering species under a global warming scenario. In spite of its relevance, phenotypic selection on flowering phenology has rarely been explored in alpine plants and never in Mediterranean high mountain species, where selective pressures are very different due to the summer drought imposed over the short growth season. We hypothesized that late-flowering plants in Mediterranean mountains should present stronger selective pressures towards early onset of reproduction than early-flowering species, because less water is available in the soil as growing season progresses. We performed selection analyses on flowering onset and duration in two high mountain species of contrasting phenology. Since phenotypic selection can be highly context-dependent, we studied several populations of each species for 2 years, covering their local altitudinal ranges and their different microhabitats. Surrogates of biotic selective agents, like fruitset for pollinators and flower and fruit loss for flower and seed predators, were included in the analysis. Differences between the early- and the late-flowering species were less than expected. A consistent negative correlational selection of flowering onset and duration was found affecting plant fitness, i.e., plants that bloomed earlier flowered for longer periods improving plant fitness. Nevertheless, the late-flowering species may experience higher risks under climate warming because in extremely warm and dry years the earlier season does not bring about a longer flowering duration due to summer drought.  相似文献   

10.
Models for sex allocation assume that increased expenditure of resources on male function decreases the resources available for female function. Under some circumstances, a negative genetic correlation between investment in stamens and investment in ovules or seeds is expected. Moreover, if fitness returns for investment in male and female function are different with respect to size, sex allocation theory predicts size‐specific gender changes. We studied sex allocation and genetic variation for investment in stamens, ovules and seeds at both the flower and the plant level in a Dutch population of the wind‐pollinated and predominantly outcrossing Plantago coronopus. Data on biomass of floral structures, stamens, ovules, seedset and seedweight were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and (genetic) correlations were estimated from the greenhouse‐grown progeny of maternal families, raised at two nutrient levels. The proportion of reproductive biomass invested in male function was high at flowering (0.86 at both nutrient levels) and much lower at fruiting (0.30 and 0.40 for the high and low nutrient treatment, respectively). Androecium and gynoecium mass exhibited moderately high levels of genetic variance, with broad‐sense heritabilities varying from 0.35 to 0.56. For seedweight no genetic variation was detected. Significant among‐family variation was also detected for the proportion of resources invested in male function at flowering, but not at fruiting. Phenotypic and broad‐sense genetic correlations between androecium and gynoecium mass were positive. Even after adjusting for plant size, as a measure of resource acquisition, maternal families that invested more biomass in the androecium also invested more in the gynoecium. This is consistent with the hypothesis that genetic variation for resource acquisition may in part be responsible for the overall lack of a negative correlation between male and female function. Larger plants had a more female‐biased allocation pattern, brought about by an increase in seedset and seedweight, whereas stamen biomass did not differ between small and large plants. These results are discussed in relation to size‐dependent sex allocation theory (SDS). Our results indicate that the studied population harboured substantial genetic variation for reproductive characters.  相似文献   

11.
Guitián, J. 1995. Sex ratio, reproductive investment and flowering phenology in dioecious Rhamnus alaternus (Rhamnaceae). - Nord. J. Bot. 15: 139–143. Copenhagen. ISSN 0107–055X.
During 1992 and 1993 I investigated the reproductive biology of the dioecious Mediterranean shrub Rhamnus alaternus in a population in the northwest Iberian Peninsula. Reproductive investment was estimated as the mean total dry weight of reproductive organs per branch tip. I also estimated number of flowers produced per plant and population sex ratio, and investigated the spatial distribution of the sexes and flowering phenology. The sex ratio was 1:1, and the spatial distribution of the sexes was random. Male plants produced 2.6 times more flowers than female plants, but the overall reproductive investment by females was 5- to 9-fold higher. In both years of study, male plants commenced flowering first. The male and female flowering peaks coincided closely (in late March) in both years. The results of this study suggest that male and female R. alaternus differ most notably in the amount of resources allocated to reproduction.  相似文献   

12.
植物资源的生殖分配是链接进化生态学和功能生态学的纽带。该文从4个组织水平上研究了针茅属(Stipa) 3种植物克氏针茅(S. krylovii)、大针茅(S. grandis)和贝加尔针茅(S. baicalensis)的生物量生殖分配以及株丛和种群水平上可育散布体的数量和生物量。结果表明: 1) 3种针茅属植物在不同组织水平上的生物量生殖分配呈现明显分异。在株丛水平上, 克氏针茅和大针茅的株丛生物量分配到生殖枝的比例分别为44.3%和47.9%, 均显著高于贝加尔针茅的35.7%。在生殖枝水平, 克氏针茅的生殖枝生物量分配到穗器官的比例为30.3%, 显著低于大针茅的42.9%和贝加尔针茅的48.4%。在穗器官水平, 大针茅穗生物量分配到散布体的比例(63.9%)最高, 克氏针茅(49.9%)次之, 贝加尔针茅(39.1%)最低。在散布体水平, 贝加尔针茅的可育散布体生物量占散布体总生物量的比例为92.3%, 显著高于克氏针茅的67.2%和大针茅的71.3%。2) 尽管3种针茅属植物在不同组织水平上的生物量生殖分配存在显著差异, 但从最终可育散布体占株丛生物量的比例看, 克氏针茅为6.1%, 贝加尔针茅为6.3%, 大针茅为9.5%; 三者在生物量生殖分配上表现出明显的趋同效应。3) 3种针茅属植物生物量生殖分配的限制性环节存在显著差异。生殖枝向穗的生物量分配是克氏针茅和大针茅生殖分配的限制性环节, 株丛向生殖枝的生物量分配或穗器官向散布体的分配是贝加尔针茅生物量生殖分配的限制性环节。从可育散布体的数量和个体生物量看, 克氏针茅采取了倾向于拓展空间的增加散布体数量的策略, 而大针茅和贝加尔针茅逐步进化出了趋向于提高个体竞争能力的增加散布体个体生物量的策略。  相似文献   

13.
Theory predicts that cosexual plants should adjust their resource investment in male and female functions according to their size if female and male fitness are differentially affected by size.However,few empirical studies have been carried out at both the flowering and fruiting stages to adequately address size-dependent sex allocation in cosexual plants.In this paper,we investigated resource investment between female and male reproduction,and their size-dependence in a perennial andromonoecious herb,Veratrum nigrum L.We sampled 192 flowering plants,estimated their standardized phenotypic gender,and assessed the resource investment in male and female functions in terms of absolute dry biomass.At the flowering stage,male investment increased with plant size more rapidly than female investment,and the standardized phenotypic femaleness (ranging from 0.267 to 0.776) was negatively correlated with plant size.By contrast,female biased allocation was found at the fruiting stage,although both flower biomass and fruit biomass were positively correlated with plant size.We propose that increased maleness with plant size at the flowering stage may represent an adaptive strategy for andromonoecious plants,because male flowers promote both male and female fertility by increasing pollinator attraction without aggravating pollen discounting.  相似文献   

14.
The prediction of tillering is poor or absent in existing sorghum crop models even though fertile tillers contribute significantly to grain yield. The objective of this study was to identify general quantitative relationships underpinning tiller dynamics of sorghum for a broad range of assimilate availabilities. Emergence, phenology, leaf area development and fertility of individual main culms and tillers were quantified weekly in plants grown at one of four plant densities ranging from two to 16 plants m(-2). On any given day, a tiller was considered potentially fertile (a posteriori) if its number of leaves continued to increase thereafter. The dynamics of potentially fertile tiller number per plant varied greatly with plant density, but could generally be described by three determinants, stable across plant densities: tiller emergence rate aligned with leaf ligule appearance rate; cessation of tiller emergence occurred at a stable leaf area index; and rate of decrease in potentially fertile tillers was linearly related to the ratio of realized to potential leaf area growth. Realized leaf area growth is the measured increase in leaf area, whereas potential leaf area growth is the estimated increase in leaf area if all potentially fertile tillers were to continue to develop. Procedures to predict this ratio, by estimating realized leaf area per plant from intercepted radiation and potential leaf area per plant from the number and type of developing axes, are presented. While it is suitable for modelling tiller dynamics in grain sorghum, this general framework needs to be validated by testing it in different environments and for other cultivars.  相似文献   

15.
Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China''s northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for the management of L. chinensis-dominant grasslands.  相似文献   

16.
Small habitat size and spatial isolation may cause plant populations to suffer from genetic drift and inbreeding, leading to a reduced fitness of individual plants. We examined the germination, establishment, growth, and reproductive capacity of two characteristic species of mown fen meadows, Carex davalliana, and Succisa pratensis, common in Switzerland. Plants were grown from seeds, which were collected in 18 habitat islands, differing in size and in degree of isolation. We used both common garden and reciprocal transplant experiments to assess effects of habitat fragmentation. In the common garden, plants of Carex originating from small habitat islands yielded 35% less biomass, 30% fewer tillers, and 45% fewer flowering tillers than plants from larger ones. In contrast, plants of Succisa originating from small habitat islands yielded 19% more biomass, 14% more flower heads and 35% more flowers per flower head than plants from larger ones. Moreover, plants of Succisa from small isolated habitats yielded 32% more rosettes than did plants from small connected islands. Reciprocally transplanted plants of Succisa originating from small habitat islands produced 7% more rosettes than plants from larger ones. There was no effect of small habitat size and isolation on germination and establishment of both species in the field. Our results document genetic differences in performance attributable to habitat fragmentation in both species. We suggest that fitness loss in Carex is caused by inbreeding depression, whereas in Succisa the differences in fitness are more likely caused by genetic differentiation. Our study implies that habitat fragmentation affects common habitat-specific species, such as Carex and Succisa, as well as rare ones.  相似文献   

17.
The pattern of biomass allocation of males and females and the sex ratio and growth characteristics of plants from three seed-size classes in Silene alba were investigated in a greenhouse study. Seed size significantly affected adult plant size and flower production of both male and female plants, but there was no significant difference in the proportion of males and females emerging in three seed-size categories. Male and female plants differed in the proportion of total biomass allocated to vegetative and reproductive structures and these differences were consistent across all seed-size categories. Males allocated a greater proportion of their biomass to flowers than did females. Female reproductive effort was dependent upon the percentage of flowers producing mature capsules. Only females with greater than 20% fruit set have a higher reproductive expenditure than males. Consequently, female expenditure is potentially greater than males, but is spread out over a longer portion of the growing season. This difference in the timing of reproductive expenditures by males and females allows females to allocate more biomass to growth during the early flowering period and may therefore account for the common pattern in herbaceous perennial dioecious species in which adult females are larger than adult males.  相似文献   

18.

Background and Aims

Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities.

Methods

A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender.

Key Results

Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness.

Conclusions

The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness.  相似文献   

19.
A field survey of plant and flower sex ratio and secondary sex characteristics was made in Silene alba. Female-biased plant sex ratios were found, as seems typical for the species. Sex ratio distribution correlated with a gradient of soil moisture (with the more moist area having a more female-biased ratio) and with changes in the density of Silene (intermediate and higher density areas having greater female bias). The floral sex ratio was significantly female-biased only at the site that was most female-biased in terms of plant sex ratio. Otherwise the population of flowers was significantly male-biased. Male and female plants harvested from the field differed in secondary sexual characteristics. Males had more flowers and invested proportionately more biomass in leaf, but less in root, stem and reproductive tissue than did females. Although both males and females were larger in terms of total dry weight at the moist site, males produced more flowers at the driest (high density) site. Here the female bias in plant sex ratio was intermediate, but the floral sex ratio was significantly male-biased. A glasshouse experiment was performed in which plants were grown at four densities. Density significantly influenced plant survivorship and the probability of flowering, and increased female bias in the pots, but it did not affect patterns of biomass allocation in flowering plants. Patterns of male and female biomass allocation did not differ in the experiment, except in terms of reproductive allocation (greater in females) and allocation to leaf, greater in males, but only at the lowest density. This work urges caution in interpreting differences between males and females in the field as secondary sex characteristics, since we find such properties to be overlapping under experimental conditions. It supports the idea that males and females of a species may sustain different reproductive output under differing conditions.  相似文献   

20.
We tested a hypothesis based on life history theory that examines reproductive costs incurred by individuals in consecutive years of their life. A multi-year dataset of resource allocation to vegetative and reproductive structures was analysed in Carex secalina — a perennial, monoecious sedge, reproducing only sexually. In a four-year garden experiment, we assessed above-ground biomass at the end of each season and reproductive allocation expressed as the total length of male and female spikes. The study was aimed at determining how size and age of a plant relates to its reproduction, and how the rate of reproduction affects the year-toyear biomass change in Carex secalina. We observed that after each reproductive episode, individuals had significantly smaller sizes and produced a lower number of generative tillers. The total production of reproductive structures decreased significantly with age in all populations. Moreover, the decrease in plant biomass was greater when more reproductive structures were produced in a previous year, which indicates that the plants incur costs of reproduction in terms of above-ground biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号