首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigated a role of p38 MAPK in the regulation of transepithelial Na(+) reabsorption by chronic application (20-24h) of hypotonicity (hypotonic stress) in renal epithelial A6 cells. Pretreatment with a specific p38 MAPK inhibitor (SB202190) significantly reduced the chronic hypotonicity-stimulated transepithelial Na(+) reabsorption by diminishing the Na(+) entry through epithelial Na(+) channel (ENaC) in the apical membrane and the Na(+) extrusion via the Na(+)/K(+) ATPase (pump), although the rate limiting step was still the Na(+) entry step. We further examined whether the inhibitory effects of SB202190 on the transepithelial Na(+) reabsorption is caused through suppression of mRNA expression of ENaC participating in the transepithelial Na(+) reabsorption as the Na(+) entry pathway. The chronic hypotonicity increased the mRNA expression of alpha-, beta-, and gamma-subunits of ENaC. Moreover, we found that inhibition of p38 MAPK by SB202190 diminished the mRNA expression of beta- and gamma-ENaC but not alpha-ENaC. Based on these observations, it is suggested that the chronic hypotonicity stimulates the renal transepithelial Na(+) reabsorption by upregulating the mRNA expression of beta- and gamma-ENaC via a p38 MAPK-dependent pathway.  相似文献   

2.
Neutrophil elastase is a serine protease that is abundant in the airways of individuals with cystic fibrosis (CF), a genetic disease manifested by excessive airway Na(+) absorption and consequent depletion of the airway surface liquid layer. Although endogenous epithelium-derived serine proteases regulate epithelial Na(+) transport, the effects of neutrophil elastase on epithelial Na(+) transport and epithelial Na(+) channel (ENaC) activity are unknown. Low micromolar concentrations of human neutrophil elastase (hNE) applied to the apical surface of a human bronchial cell line (16HBE14o-/beta gamma) increased Na(+) transport about twofold. Similar effects were observed with trypsin, also a serine protease. Proteolytic inhibitors of hNE or trypsin selectively abolished the enzyme-induced increase of epithelial Na(+) transport. At the level of the single channel, submicromolar concentrations of hNE increased activity of near-silent ENaC approximately 108-fold in patches from NIH-3T3 cells expressing rat alpha-, beta-, and gamma-ENaC subunits. However, no enzyme effects were observed on basally active ENaCs. Trypsin exposure following hNE revealed no additional increase in amiloride-sensitive short-circuit current or in ENaC activity, suggesting these enzymes share a common mode of action for increasing Na(+) transport, likely through proteolytic activation of ENaC. The hNE-induced increase of near-silent ENaC activity in CF airways could contribute to Na(+) hyperabsorption, reduced airway surface liquid height, and dehydrated mucus culminating in inefficient mucociliary clearance.  相似文献   

3.
The amiloride-sensitive epithelial Na(+) channels (ENaC) in the intralobular duct cells of mouse mandibular glands are inhibited by the ubiquitin-protein ligase, Nedd4, which is activated by increased intracellular Na(+). In this study we have used whole-cell patch clamp methods in mouse mandibular duct cells to investigate the role of the C termini of the alpha-, beta-, and gamma-subunits of ENaC in mediating this inhibition. We found that peptides corresponding to the C termini of the beta- and gamma-subunits, but not the alpha-subunit, inhibited the activity of the Na(+) channels. This mechanism did not involve Nedd4 and probably resulted from the exogenous C termini interfering competitively with the protein-protein interactions that keep the channels active. In the case of the C terminus of mouse beta-ENaC, the interacting motif included betaSer(631), betaAsp(632), and betaSer(633). In the C terminus of mouse gamma-ENaC, it included gammaSer(640). Once these motifs were deleted, we were able to use the C termini of beta- and gamma-ENaC to prevent Nedd4-mediated down-regulation of Na(+) channel activity. The C terminus of the alpha-subunit, on the contrary, did not prevent Nedd4-mediated inhibition of the Na(+) channels. We conclude that mouse Nedd4 interacts with the beta- and gamma-subunits of ENaC.  相似文献   

4.
5.
In fetal pneumocytes, increasing P(O(2)) can raise apical Na(+) conductance (G(Na(+))) and increase the abundance of epithelial Na(+) channel subunit (alpha-, beta-, and gamma-ENaC) mRNA, suggesting that the rise in G(Na(+)), which may be important to the perinatal maturation of the lung, reflects O(2)-evoked ENaC gene expression. However, we now show that physiologically relevant increases in P(O(2)) do not affect alpha-, beta-, and gamma-ENaC mRNA abundance in pneumocytes maintained (approximately 48 h) in hormone-free medium or in medium supplemented with dexamethasone and tri-iodothyronine, although the response does persist in cells maintained in medium containing a complex mixture of hormones/growth factors. However, parallel electrometric studies revealed clear increases in G(Na(+)) under all tested conditions and so it is now clear that O(2)-evoked increases in G(Na(+)) can occur without corresponding increases in ENaC mRNA abundance. It is therefore unlikely that this rise in G(Na(+)) is secondary to O(2)-evoked ENaC gene expression.  相似文献   

6.
The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na(+) absorption across the apical membranes of several absorptive epithelia. The rate of Na(+) absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Previous reports have implicated a role for the t-SNARE protein, syntaxin 1A (S1A), in the regulation of ENaC current (I(Na)). In the present study, we examine the structure-function relations influencing S1A-ENaC interactions. In vitro pull-down assays demonstrated that S1A directly interacts with the C termini of the alpha-, beta-, and gamma-ENaC subunits but not with the N terminus of any ENaC subunit. The H3 domain of S1A is the critical motif mediating S1A-ENaC binding. Functional studies in ENaC expressing Xenopus oocytes revealed that deletion of the H3 domain of co-expressed S1A eliminated its inhibition of I(Na), and acute injection of a GST-H3 fusion protein into ENaC expressing oocytes inhibited I(Na) to the same extent as S1A co-expression. In cell surface ENaC labeling experiments, reductions in plasma membrane ENaC accounted for the H3 domain inhibition of I(Na). Individually substituting C terminus-truncated alpha-, beta-, or gamma-ENaC subunits for their wild-type counterparts reversed the S1A-induced inhibition of I(Na), and oocytes expressing ENaC comprised of three C terminus-truncated subunits showed no S1A inhibition of I(Na). C terminus truncation or disruption of the C terminus beta-subunit PY motif increases I(Na) by interfering with ENaC endocytosis. In contrast to subunit truncation, a beta-ENaC PY mutation did not relieve S1A inhibition of I(Na), suggesting that S1A does not perturb Nedd4 interactions that lead to ENaC endocytosis/degradation. This study provides support for the concept that S1A inhibits ENaC-mediated Na(+) transport by decreasing cell surface channel number via direct protein-protein interactions at the ENaC C termini.  相似文献   

7.
In many epithelial tissues in the body (e.g. kidney distal nephron, colon, airways) the rate of Na(+) reabsorption is governed by the activity of the epithelial Na(+) channel (ENaC). ENaC activity in turn is regulated by a number of factors including hormones, physiological conditions, and other ion channels. To begin to understand the mechanisms by which ENaC is regulated, we have examined the trafficking and turnover of ENaC subunits in A6 cells, a polarized, hormonally responsive Xenopus kidney cell line. As previously observed by others, the half-life of newly synthesized ENaC subunits was universally short ( approximately 2 h). However, the half-lives of alpha- and gamma-ENaC subunits that reached the apical cell surface were considerably longer (t(12) > 24 h), whereas intriguingly, the half-life of cell surface beta-ENaC was only approximately 6 h. We then examined the effects of various modulators of sodium transport on cell surface levels of individual ENaC subunits. Up-regulation of ENaC-mediated sodium conductance by overnight treatment with aldosterone or by short term incubation with vasopressin dramatically increased cell surface levels of beta-ENaC without affecting alpha- or gamma-ENaC levels. Conversely, treatment with brefeldin A selectively decreased the amount of beta-ENaC at the apical membrane. Short term treatment with aldosterone or insulin had no effect on cell surface amounts of any subunits. Subcellular fractionation revealed a selective loss of beta-ENaC from early endosomal pools in response to vasopressin. Our data suggest the possibility that trafficking and turnover of individual ENaC subunits at the apical membrane of A6 cells is non-coordinately regulated. The selective trafficking of beta-ENaC may provide a mechanism for regulating sodium conductance in response to physiological stimuli.  相似文献   

8.
Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.  相似文献   

9.
Edema fluid (EF) increases epithelial Na(+) transport by rat fetal distal lung epithelia (FDLE) and induces net lung fluid absorption in fetal mouse lung explants [Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM, O'Brodovich H. J Physiol (Lond) 544: 537-548, 2002]. We now show that EF increases fluid absorption across monolayers of rat FDLE in a dose-dependent manner. To study the role of subunits of the epithelial Na(+) channel (ENaC) in the phenomena, we cultured explants from the distal lungs of 16-day gestational age wild-type (WT) or alpha-, beta-, or gamma-ENaC knockout or heterozygote (HT) mice. WT explants cultured in media continuously expanded over time as a result of net fluid secretion. In contrast, when explants were exposed to EF for 24 h, net fluid absorption occurred. EF-exposed explants had normal histology, but marked changes were seen after Triton X-100 or staurosporine exposure. Transmission electron microscopy showed EF promoted lamellar body formation and abundant surfactant in the explants' lumens. EF-induced changes in explant size were similar in alpha-ENaC knockout, WT, and HT littermate fetal lung explants (P > 0.05). In contrast, EF's effect was attenuated in beta- and gamma-ENaC knockouts (P < 0.05) vs. WT and HT littermate fetal lung explants. EF exposure slightly decreased or had no effect on mRNA levels for alpha-ENaC in various mouse genotypes but decreased expression of beta- and gamma-ENaC subunit mRNAs (P < 0.01) across all genotype groups. We conclude that beta- and gamma-, but not alpha-, ENaC subunits are essential for EF to exert its maximal effect on net fluid absorption by distal lung epithelia.  相似文献   

10.
11.
12.
Mouse mandibular salivary duct cells contain an amiloride-sensitive Na+ current and express all three subunits of the epithelial Na+ channel, ENaC. This amiloride-sensitive Na+ current is subject to feedback regulation by intracellular Na+ and we have previously demonstrated that this regulation is mediated by an ubiquitin-protein ligase, which we identified as Nedd4. The evidence supporting this identification is as follows: (1) antibodies raised against murine Nedd4 block Na+ feedback inhibition; (2) a mutant of murine Nedd4 containing the WW domains but no HECT domain (ubiquitin-protein ligase) blocks Na+ feedback inhibition; and (3) Nedd4 is expressed in mouse mandibular salivary duct cells. In the present studies, we have used whole-cell patch-clamp methods to further investigate the mechanisms by which ubiquitin-protein ligases regulate the amiloride-sensitive Na+ conductance in mouse salivary duct cells. In particular, we have examined the possibility that the ubiquitin-protein ligase, KIAA0439, which is closely related to Nedd4, may mediate Na+ feedback control of amiloride-sensitive Na+ channels. Furthermore, we have attempted to define the mechanism by which ubiquitin-protein ligases inhibit Na+ channels. We have found that KIAA0439 is expressed in mouse mandibular ducts and interacts with the PY motifs of the alpha-, beta-, and gamma-subunits of ENaC in vitro. Furthermore, in whole-cell patch-clamp studies, a glutathione-S-transferase (GST)-fusion protein containing the WW motifs of human KIAA0439 was able to inhibit feedback regulation of the amiloride-sensitive Na+ current by intracellular Na+. We also examined whether GST-fusion proteins containing the C-termini of the alpha-, beta-, and gamma-subunits of ENaC are able to interrupt Na+ feedback regulation of the amiloride-sensitive Na+ current. We found that the C-termini of the beta- and gamma-subunits were able to do so, whereas the C-terminus of the alpha-subunit was not. We conclude that KIAA0439 is, together with Nedd4, a potential mediator of the control of epithelial Na+ channels in salivary duct cells by intracellular Na+. We further conclude that ubiquitin-protein ligases interact with the Na+ channels through the C-termini of the beta- and gamma-subunits of the Na+ channels.  相似文献   

13.
The amiloride-sensitive epithelial sodium channel (ENaC), a multimeric plasma membrane protein composed of alpha-, beta-, and gamma-ENaC subunits, mediates Na(+) reabsorption in epithelial tissues, including the distal nephron, colon, lung, and secretory glands, and plays a critical role in pathophysiology of essential hypertension and cystic fibrosis (CF). The function of ENaC is tightly regulated by signals elicited by aldosterone, vasopressin, agents that increase intracellular cAMP levels, ions, ion channels, G-protein-coupled mechanisms, and cytoskeletal proteins. In this paper, the effects of Ca(2+) on the expression of the human ENaC subunits expressed in human embryonic kidney cells (HEK-293 cells) were examined. Incubation of cells with increased extracellular Ca(2+) and treatment of cells with A23187 and thapsigargin stimulated the expression of the monomeric ENaC subunits. Treatment of cells with Ca(2+)-chelating agents, EGTA and BAPTA-AM, reduced the levels of ENaC subunit expression. The pulse-chase experiments suggested that a rise in the intracellular Ca(2+) increases the ENaC subunit expression. Immunoblot analysis using the anti-ubiquitin antibody indicated that ENaC undergoes ubiquitination. A correlation between the processes that regulate ENaC function with the intracellular Ca(2+) was discussed.  相似文献   

14.
15.
16.
Evidence of absorptive or secretory ion transport in different respiratory regions of the mouse was sought by assessing the regional distribution of alpha-, beta-, and gamma-epithelial sodium channel (ENaC; Na(+) absorptive), cystic fibrosis transmembrane conductor regulator (CFTR), and Na(+)-K(+)-2Cl(-) cotransporter mRNAs. High levels of ENaC subunit expression were found in nasal surface epithelium and gland ducts. CFTR was expressed in both superficial nasal respiratory epithelium and glands. These results are consistent with basal amiloride-sensitive Na(+) absorption and cAMP-dependent Cl(-) secretion in murine nasal epithelia. Expression of all three ENaC subunits increased progressively from trachea to terminal bronchioles. Intermediate levels of CFTR and cotransporter expression in bronchial epithelium diminished in bronchioles. The low abundance of CFTR mRNA throughout murine pulmonary epithelium is consistent with functional data that attributes Cl(-) secretion predominantly to an alternative Cl(-) channel. alpha-ENaC as the only mRNA found in all regions of airway epithelia is consistent with the alpha-subunit as requisite for Na(+) absorption, and the increased expression of alpha-, beta-, and gamma-ENaC in distal airways suggests a greater absorptive capability in this region.  相似文献   

17.
18.
19.
In the kidney, the fine control of NaCl absorption takes place in the distal nephron and is controlled by aldosterone and vasopressin. This review summarizes the effects of vasopressin on Na+ transport mediated by the amiloride-sensitive epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel in immortalized or primary cultured cortical collecting duct cells, expressing either the wild-type ENaC subunits, or mutations, or deletions of the PY domain of the beta- or gamma-ENaC subunits responsible for Liddle's syndrome, an inherited form of hypertension due to excessive salt absorption.  相似文献   

20.
Alveolar fluid clearance in the developing and mature lungs is believed to be mediated by some form of epithelial Na channels (ENaC). However, single-channel studies using isolated alveolar type II (ATII) cells have failed to demonstrate consistently the presence of highly selective Na+ channels that would be expected from ENaC expression. We postulated that in vitro culture conditions might be responsible for alterations in the biophysical properties of Na+ conductances observed in cultured ATII cells. When ATII cells were grown on glass plates submerged in media that lacked steroids, the predominant channel was a 21-pS nonselective cation channel (NSC) with a Na+-to-K+ selectivity of 1; however, when grown on permeable supports in the presence of steroids and air interface, the predominant channel was a low-conductance (6.6 +/- 3.4 pS, n = 94), highly Na+-selective channel (HSC) with a P(Na)/P(K) >80 that is inhibited by submicromolar concentrations of amiloride (K(0.5) = 37 nM) and is similar in biophysical properties to ENaC channels described in other epithelia. To establish the relationship of this HSC channel to the cloned ENaC, we employed antisense oligonucleotide methods to inhibit the individual subunit proteins of ENaC (alpha, beta, and gamma) and used patch-clamp techniques to determine the density of this channel in apical membrane patches of ATII cells. Overnight treatment of cells with antisense oligonucleotides to any of the three subunits of ENaC resulted in a significant decrease in the density of HSC channels in the apical membrane cell-attached patches. Taken together, these results show that when grown on permeable supports in the presence of steroids and air interface, the predominant channels expressed in ATII cells have single-channel characteristics resembling channels that are associated with the coexpression of the three cloned ENaC subunits alpha-, beta-, and gamma-ENaC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号