首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminal region of phosphoribulokinase (PRK) has been proposed to contain a "P-loop" or "Walker A" motif. In Rhodobacter sphaeroides PRK, four alcohol side chains, contributed by S14, T18, S19, and T20, map within the P loop and represent potential Mg-ATP ligands. Each of these has been individually replaced with an alanine and the impact of these substitutions on enzyme-ATP interactions and overall catalytic efficiency evaluated. Each mutant PRK retains the ability to tightly bind the positive effector, NADH (0.7-0.9 per site), and exhibits allosteric activation, suggesting that the proteins retain a high degree of structural integrity. Similarly, each mutant PRK retains the ability to stoichiometrically (0.7-1.2 per site) bind the alternative substrate trinitrophenyl-ATP. Despite the large size of the PRK oligomer (8 x 32 kDa), (31)P NMR can be used to detect stoichiometrically bound Mg-ATP substrate, which produces markedly broadened peaks in comparison with signals from unbound Mg-ATP. Elimination of alcohol substituents in mutants T18A, S19A, or T20A produces enzymes which retain the ability to form stable PRKMg-ATP complexes. Each mutant complex is characterized by (31)P resonances for alpha- and gamma-phosphoryls of bound Mg-ATP which are narrower than measured for wild-type PRKMg-ATP; signals for the beta-phosphoryl are poorly detectable for mutant PRKMg-ATP complexes. Kinetic characterization indicates that these mutants differ markedly with respect to catalytic activity. T20A exhibits V(m) comparable to wild-type PRK, while V(m) is diminished by 8-fold for T18A and by 40-fold for S14A. In contrast to these modest effects, S19A exhibits decreases in V(m) and V(m)/K(Ru5P) of 500-fold and >15000-fold, respectively. S19A and T18A exhibit only modest (6-7-fold) increases in S(1/2) for ATP but larger (30-45-fold) increases in K(m) for Ru5P. K(I) values for the competitive inhibitor, 6-phosphogluconate, do not significantly change upon mutation of T18 or S19, suggesting that these residues are not crucial to Ru5P binding. A role for the alcohol group of S19, the eighth residue in P-loop motif, as a ligand to the Mg-ATP substrate seems compatible with the characterization data; adjacent alcohols do not efficiently function as surrogates. Such a proposed function for S19 is compatible with its proximity to E131, the acidic residue in a putative Walker B motif and probable second Mg-ATP ligand in PRK's active site.  相似文献   

2.
In the Rhodobacter sphaeroides phosphoribulokinase (PRK) structure, there are several disordered regions, including a loop containing invariant residues Y98 and H100. The functional importance of these residues has been unclear. PRK is inactivated by diethyl pyrocarbonate (DEPC) and protected by the substrates ATP and Ru5P, as well as by the competitive inhibitor, 6-phosphogluconate, suggesting active site histidine residue(s). PRK contains only three invariant histidines: H45, H100, and H134. Previous mutagenesis studies discount significant function for H134, but implicate H45 in Ru5P binding. PRK mutant H45N is inactivated by DEPC, implicating a second active site histidine. To evaluate the function of H100, as well as another invariant loop residue Y98, PRK mutants Y98L, H100A, H100N, and H100Q were characterized. Mutant PRK binding stoichiometries for the fluorescent alternative substrate, trinitrophenyl-ATP, as well as the allosteric activator, NADH, are comparable to wild-type PRK values, suggesting intact effector and substrate binding sites. The K(mRu5P) for the H100 mutants shows modest eight- to 14-fold inflation effects, whereas Y98L exhibits a 40-fold inflation for K(mRu5P). However, Y98L's K(i) for the competitive inhibitor 6-phosphogluconate is close to that of wild-type PRK. These observations suggest that Y98 and H100 are not essential Ru5P binding determinants. The Vm of Y98L is diminished 27-fold compared with wild-type PRK. In contrast, H100A, H100N, and H100Q exhibit significant decreases in Vm of 2600-, 2300-, and 735-fold, respectively. Results suggest that the mobile region containing Y98 and H100 must contribute to PRK's active site. Moreover, H100's imidazole significantly influences catalytic efficiency.  相似文献   

3.
S Parikh  D P Moynihan  G Xiao  P J Tonge 《Biochemistry》1999,38(41):13623-13634
The role of tyrosine 158 (Y158) and lysine 165 (K165) in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, has been investigated. These residues have been identified as putative catalytic residues on the basis of structural and sequence homology with the short chain alcohol dehydrogenase family of enzymes. Replacement of Y158 with phenylalanine (Y158F) and with alanine (Y158A) results in 24- and 1500-fold decreases in k(cat), respectively, while leaving K(m) for the substrate, trans-2-dodecenoyl-CoA, unaffected. Remarkably, however, replacement of Y158 with serine (Y158S) results in an enzyme with wild-type activity. Kinetic isotope effect studies indicate that the transfer of a solvent-exchangeable proton is partially rate-limiting for the wild-type and Y158S enzymes, but not for the Y158A enzyme. These data indicate that Y158 does not function formally as a proton donor in the reaction but likely functions as an electrophilic catalyst, stabilizing the transition state for hydride transfer by hydrogen bonding to the substrate carbonyl. A conformational change involving rotation of the Y158 side chain upon binding of the enoyl substrate to the enzyme is proposed as an explanation for the inverse solvent isotope effect observed on V/K(DD-CoA) when either NADH or NADD is used as the reductant. These data are consistent with the recently published structure of a C16 fatty acid substrate bound to InhA that shows Y158 hydrogen bonded to the substrate carbonyl group and rotated from the position it occupies in the InhA-NADH binary complex [Rozwarski, D. A., Vilcheze, C., Sugantino, M., Bittman, R., and Sacchettini, J. C. (1999) J. Biol. Chem. 274, 15582-15589]. Finally, the role of K165 has been analyzed using site-directed mutagenesis. Replacement of K165 with glutamine (K165Q) and arginine (K165R) has no effect on the enzyme's catalytic ability or on its ability to bind NADH. However, the K165A and K165M enzymes are unable to bind NADH, indicating that K165 has a primary role in cofactor binding.  相似文献   

4.
Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction.  相似文献   

5.
Herdendorf TJ  Miziorko HM 《Biochemistry》2007,46(42):11780-11788
Phosphomevalonate kinase (PMK) catalyzes the cation-dependent reaction of mevalonate 5-phosphate with ATP to form mevalonate 5-diphosphate and ADP, a key step in the mevalonate pathway for isoprenoid/sterol biosynthesis. Animal PMK proteins belong to the nucleoside monophosphate (NMP) kinase family. For many NMP kinases, multiple basic residues contribute to the neutralization of the negatively charged pentacoordinate phosphate reaction intermediate. Loss of basicity can result in catalytically impaired enzymes. On the basis of this precedent, conserved basic residues of human PMK have been mutated, and purified forms of the mutated proteins have been kinetically and biophysically characterized. K48M and R73M mutants exhibit diminished Vmax values in both reaction directions (>1000-fold) with only slight Km perturbations (<10-fold). In both forward and reverse reactions, R110M exhibits a large (>10,000-fold) specific activity diminution. R111M exhibits substantially inflated Km values for mevalonate 5-phosphate and mevalonate 5-diphosphate (60- and 30-fold, respectively) as well as decreases [50-fold (forward) and 85-fold (reverse)] in Vmax. R84M also exhibits inflated Km values (50- and 33-fold for mevalonate 5-phosphate and mevalonate 5-diphosphate, respectively). The Ki values for R111M and R84M product inhibition by mevalonate 5-diphosphate are inflated by 45- and 63-fold; effects are comparable to the 30- and 38-fold inflations in Km for mevalonate 5-diphosphate. R141M exhibits little perturbation in Vmax [14-fold (forward) and 10-fold (reverse)] but has inflated Km values for ATP and ADP (48- and 136-fold, respectively). The Kd of ATP for R141M, determined by changes in tryptophan fluorescence, is inflated 27-fold compared to wt PMK. These data suggest that R110 is important to PMK catalysis, which is also influenced by K48 and R73. R111 and R84 contribute to binding of mevalonate 5-phosphate and R141 to binding of ATP.  相似文献   

6.
We have employed site-directed mutagenesis to investigate the contribution of a conserved arginyl residue to the catalytic activity and cofactor affinity of D-serine dehydratase, a model pyridoxal 5'-phosphate (vitamin B6) enzyme. Replacement of R-120 in the active site peptide of D-serine dehydratase by L decreased the affinity of the enzyme for pyridoxal 5'-phosphate by 20-fold and reduced turnover by 5-8-fold. kappa cat displayed modified substrate alpha-deuterium isotope effects and altered dependence on both temperature and pH. Analysis of the pH rate profiles of DSD and the R-120----L variant indicated that R-120 interacts electrostatically with catalytically essential ionizable groups at the active site of wild type D-serine dehydratase. The decrease in cofactor affinity observed for DSD(R120L) was not accompanied by significant perturbations in the UV, CD, or 31P NMR spectrum of the holoenzyme, suggesting that the contribution of R-120 to pyridoxal phosphate affinity may be indirect or else involve an interaction with a cofactor functional group other than the 5'-phosphoryl moiety. The properties of two other site-directed variants of D-serine dehydratase indicated that the pyridoxal 5'-phosphate:K-118 Schiff base was indifferent to a small change in the shape of the side chain at position 117 (I-117----L), whereas replacement of K-118 by H resulted in undetectable levels of enzyme. A poor ability to bind cofactor may have rendered DSD(K118H) susceptible to intracellular proteolysis.  相似文献   

7.
ALDH5 (aka succinic semialdehyde dehydrogenase) is a NAD(+)-dependent aldehyde dehydrogenase crucial for the proper removal of the GABA metabolite succinic semialdehyde (SSA). All known ALDH5 family members contain the conserved amino acid sequence "MITRK". Our studies of rat ALDH5A indicate that residue R166 in this sequence may play a role in the substrate specificity of ALDH5A for the gamma-carboxylated succinic semialdehyde versus other aliphatic and aromatic aldehydes including acetaldehyde and benzaldehyde. We tested the hypothesis that the R166 residue regulates aldehyde specificity by utilizing rat ALDH5A wild-type (R166wt) and R166K, R166H, R166A, and R166E mutants. The V(MAX) using SSA fell whereas the K(M) for SSA increased for all mutants analyzed yielding k(cat)/K(M) (s(-1)/microM) ratios of 52.3 (R166wt), 5.5 (R166K), 0.01 (R166H), 0.008 (R166E), and 0.004 (R166A). Utilization of acetaldehyde by the R166H mutant was similar to R166wt with k(cat)/K(M)'s of 0.003 and 0.002, respectively. Almost no activity towards acetaldehyde was noted for the R166E and R166A mutants. Unexpectedly, the K(M) for NAD(+) changed: 21 microM (R166wt), 81 microM (R166K), 63 microM (R166H), 35 microM (R166E) and 44 microM (R166A). As release of NADH can be a rate-limiting step for ALDH activity, NADH binding was evaluated for R166wt and R166H enzymes. The K(D) of NADH for R166H (0.9 microM) was 11-fold less than that of ALDH5A wt (10.3 microM) and possibly explains the increase in the K(M) for NAD(+). Furthermore, data using R166K and R166H mutants demonstrate that inhibition of enzyme activity by low pH is regulated in part by the R166 residue. Our data indicate that the R166 residue of ALDH5A regulates multiple enzymatic functions.  相似文献   

8.
Fungal metabolism of biphenyl.   总被引:9,自引:0,他引:9       下载免费PDF全文
gamma-Glutamyl phosphate reductase, the second enzyme of proline biosynthesis, catalyses the formation of l-glutamic acid 5-semialdehyde from gamma-glutamyl phosphate with NAD(P)H as cofactor. It was purified 150-fold from crude extracts of Pseudomonas aeruginosa PAO 1 by DEAE-cellulose chromatography and hydroxyapatite adsorption chromatography. The partially purified preparation, when assayed in the reverse of the biosynthetic direction, utilized l-1-pyrroline-5-carboxylic acid as substrate and reduced NAD(P)(+). The apparent K(m) values were: NAD(+), 0.36mm; NADP(+), 0.31mm; l-1-pyrroline-5-carboxylic acid, 4mm with NADP(+) and 8mm with NAD(+); P(i), 28mm. 3-(Phosphonoacetylamido)-l-alanine, a structural analogue of gamma-glutamyl phosphate, inhibited this enzyme competitively (K(i)=7mm). 1-Pyrroline-5-carboxylate reductase (EC 1.5.1.2), the third enzyme of proline biosynthesis, was purified 56-fold by (NH(4))(2)SO(4) fractionation, Sephadex G-150 gel filtration and DEAE-cellulose chromatography. It reduced l-1-pyrroline-5-carboxylate with NAD(P)H as a cofactor to l-proline. NADH (K(m)=0.05mm) was a better substrate than NADPH (K(m)=0.02mm). The apparent K(m) values for l-1-pyrroline-5-carboxylate were 0.12mm with NADPH and 0.09mm with NADH. The 3-acetylpyridine analogue of NAD(+) at 2mm caused 95% inhibition of the enzyme, which was also inhibited by thio-NAD(P)(+), heavy-metal ions and thiol-blocking reagents. In cells of strain PAO 1 grown on a proline-medium the activity of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase was about 40% lower than in cells grown on a glutamate medium. No repressive effect of proline on 1-pyrroline-5-carboxylate reductase was observed.  相似文献   

9.
A recombinant form of Rhodobacter sphaeroides phosphoribulokinase (form I; NADH dependent) has been expressed in and purified to homogeneity from Escherichia coli that harbor the prkA gene in the plasmid pKP1565b. Restriction digestion of the phosphoribulokinase-encoding plasmid produces a tractable 450 bp fragment that encodes amino acid residues 28-179, which include a region (residues 42-54) highly conserved among phosphoribulokinase proteins. Using overlap extension polymerase chain reaction methodology, directed mutagenesis was performed to produce mutant proteins in which basic residues in this conserved region were replaced by neutral amino acids. Lysine-53, implicated by affinity labeling studies, has been replaced by methionine; little effect on substrate binding or catalysis is apparent. In contrast, when histidine-45 is replaced by asparagine, a 40-fold increase in the Km for ribulose 5-phosphate results; a 200-fold increase results when arginine-49 is replaced by glutamine. Implication of this region as part of the sugar phosphate binding site is compatible with previous results that indicate targeting by an ATP analogue containing a reactive functionality esterified to the gamma-phosphoryl group. The phosphoribulokinase reaction involves a single in-line phosphoryl transfer, requiring that the gamma-phosphoryl of ATP be closely juxtaposed to the bound cosubstrate. It follows that any reactive group attached to the gamma-phosphoryl in a nucleotide analogue that is bound to PRK in the absence of the cosubstrate will be favorably positioned to modify the sugar phosphate binding site.  相似文献   

10.
Hereditary enzymopenic methemoglobinemia is a rare disease that predominantly results from defects in either the erythrocytic (type I) or microsomal (type II) forms of the enzyme NADH:cytochrome b5 reductase (EC 1.6.2.2). All 25 currently identified type I and type II methemoglobinemia mutants have been expressed in Escherichia coli using a novel six histidine-tagged rat cytochrome b5/cytochrome b5 reductase fusion protein designated NADH:cytochrome c reductase (H6NCR). All 25 H6NCR variants were isolated and demonstrated to result in two groups of expression products. The first group of 16 mutants, which included the majority of the type I mutants, included K116Q, P131L, L139P, T183S, M193V, S194P, P211L, L215P, A245T, A245V, C270Y, E279K, V305R, V319M, M340-, and F365-, and yielded full-length fusion proteins that retained variable levels of NADH:cytochrome c reductase (NADH:CR) activity, ranging from approximately 2% (M340-) to 92% (K116Q) of that of the wild-type fusion protein. In contrast, the remaining nine mutants that represented the majority of the type II variants, comprised a second group that included Y109*, R124Q, Q143*, R150*, P162H, V172M, R226*, C270R, and R285*, and resulted in truncated H6NCR variants that retained the amino-terminal cytochrome b5 domain but were devoid of NADH:CR activity due to the absence of the cytochrome b5 reductase flavin domain. Kinetic analyses of the first group of full-length mutant fusion proteins indicated that values for both kcat and Km(NADH) were decreased and increased, respectively, indicating that the various mutations affected both substrate affinity and/or turnover. However, for the second group, the truncated products were the result of incomplete production of the carboxyl-terminal flavin-containing domain or instability of the expression products due to improper folding and/or lack of flavin incorporation.  相似文献   

11.
After growth on various carbon sources, sonic extracts of Hydrogenomonas facilis contained ribulosediphosphate (RuDP) carboxylase and phosphoribulokinase (Ru5-P kinase). After very short sonic treatment, a reductive adenosine triphosphate (ATP)-dependent incorporation of (14)CO(2) was also detectable. Reduced nicotinamide adenine dinucleotide (NADH(2)) served as reductant 30-fold more effectively than reduced nicotinamide adenine dinucleotide phosphate (NADPH(2)). Adenosine 5'-phosphate (AMP) and adenosine 5'-pyrophosphate (ADP) inhibited Ru5-P kinase and NADH(2)-, ATP-dependent CO(2) fixation. The levels and duration of CO(2) fixation suggested that it is a cyclic process. The requirement of reduced pyridine nucleotide and ATP and the sensitivity of fixation to AMP and ADP support the conjecture that it occurs via the Calvin cycle. After thorough study of variables affecting catalysis, specific activities (millimicromoles of substrate disappearing per milligram of protein) at 30 C were determined for RuDP carboxylase (C), Ru5-P kinase (K) and ATP-, NADH(2)- dependent CO(2) fixation (CO(2) F) after growth autotrophically on fructose, glucose, ribose, glutamate, lactate, succinate, and acetate. Values for these growth modes were, respectively-for C: 67.3, 51.1, 51.4, 24.6, 2.05, 10.2, 2.25, 1.4; for K: 24.7, 24.0, 23.2, 14.2, 12.8, 12.9, 13.4, 2.8; and for CO(2) F: 4.54, 4.83, 3.10, 2.87, 0.85, 1.51, 0.24, 0.41. The qualitative parallel between values for RuDP carboxylase and CO(2) fixation suggests that one major control point in fixation is the step catalyzed by RuDP carboxylase.  相似文献   

12.
Xu Y  Dewanti AR  Mitra B 《Biochemistry》2002,41(41):12313-12319
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Active site structures of three homologous enzymes, including MDH, show the presence of two conserved arginine residues in close juxtaposition (Arg165 and Arg277 in MDH). Arg277 has an important catalytic role; it stabilizes both the ground and transition states through its positive charge as well as a hydrogen bond [Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065]. In this study, we examined the role of Arg165 and the overall importance of the Arg165/Arg277 pair. Single mutants at Arg165 as well as double mutants at Arg165 and Arg277 were characterized. Our results show that Arg165 has a role similar to, but less critical than, that of Arg277. It stabilizes the transition state through its positive charge and the ground state through a charge-independent interaction, most likely, a hydrogen bond. Though the k(cat)s for the charge-conserved mutants, R165K and R277K, were only 3-5-fold lower than those of wild-type MDH (wtMDH), the k(cat) for R165K/R277K was approximately 350-fold lower. Thus, at least one arginine residue is required for the optimal substrate orientation and catalysis. Stopped-flow studies show that the FMN reduction step is completely rate-limiting for both wtMDH and the arginine mutants, with the possible exception of R165E. Substrate isotope effects indicate that the carbon-hydrogen bond-breaking step is only partially rate-limiting for wtMDH but fully rate-limiting for the mutants. pH profiles of R165M conclusively show that the pK(a) of 9.3 in free wtMDH does not belong to Arg165.  相似文献   

13.
We found that pyridoxal phosphate shows considerable inhibition of cathepsins. CLIK-071, in which the phosphate ester of position 3 of pyridoxal phosphate was replaced by propionate, strongly inhibited cathepsin B. Three new types of synthetic pyridoxal propionate derivatives showing specific inhibition of cathepsin K were developed. New synthetic pyridoxal propionate derivatives, -162, -163, and -164, in which the methyl arm of position 6 of CLIK-071 was additionally modified, strongly inhibited cathepsin K and cathepsin S weakly, but other cathepsins were not inhibited. CLIK-166, in which the position 4 aldehyde of CLIK-071 is replaced by a vinyl radical and position 5 is additionally modified, showed cathepsin K-specific inhibition at 10(-5) M. Pit formation due to bone collagen degradation by cathepsin K of rat osteoclasts was specifically suppressed by administration of CLIK-164, but not by inhibitors of cathepsin L or B.  相似文献   

14.
NADPH-cytochrome P-450 reductase is the electron transfer partner for the cytochromes P-450, heme oxygenase, and squalene monooxygenase and is a component of the nitric-oxide synthases and methionine-synthase reductase. P-450 reductase shows very high selectivity for NADPH and uses NADH only poorly. Substitution of tryptophan 677 with alanine has been shown to yield a 3-fold increase in turnover with NADH, but profound inhibition by NADP(+) makes the enzyme unsuitable for in vivo applications. In the present study site-directed mutagenesis of amino acids in the 2'-phosphate-binding site of the NADPH domain, coupled with the W677A substitution, was used to generate a reductase that was able to use NADH efficiently without inhibition by NADP(+). Of 11 single, double, and triple mutant proteins, two (R597M/W677A and R597M/K602W/W677A) showed up to a 500-fold increase in catalytic efficiency (k(cat)/K(m)) with NADH. Inhibition by NADP(+) was reduced by up to 4 orders of magnitude relative to the W677A protein and was equal to or less than that of the wild-type reductase. Both proteins were 2-3-fold more active than wild-type reductase with NADH in reconstitution assays with cytochrome P-450 1A2 and with squalene monooxygenase. In a recombinant cytochrome P-450 2E1 Ames bacterial mutagenicity assay, the R597M/W677A protein increased the sensitivity to dimethylnitrosamine by approximately 2-fold, suggesting that the ability to use NADH afforded a significant advantage in this in vivo assay.  相似文献   

15.
Using 0.4 m imidazole citrate buffer (pH 7.5) containing 0.1 mm l-cysteine, homodimeric starch phosphorylase from Corynebacterium calluane (CcStP) was dissociated into native-like folded subunits concomitant with release of pyridoxal 5'-phosphate and loss of activity. The inactivation rate of CcStP under resolution conditions at 30 degrees C was, respectively, four- and threefold reduced in two mutants, Arg234-->Ala and Arg242-->Ala, previously shown to cause thermostabilization of CcStP [Griessler, R., Schwarz, A., Mucha, J. & Nidetzky, B. (2003) Eur. J. Biochem.270, 2126-2136]. The proportion of original enzyme activity restored upon the reconstitution of wild-type and mutant apo-phosphorylases with pyridoxal 5'-phosphate was increased up to 4.5-fold by added phosphate. The effect on recovery of activity displayed a saturatable dependence on the phosphate concentration and results from interactions with the oxyanion that are specific to the quarternary state. Arg234-->Ala and Arg242-->Ala mutants showed, respectively, eight- and > 20-fold decreased apparent affinities for phosphate (K(app)), compared to the wild-type (K(app) approximately 6 mm). When reconstituted next to each other in solution, apo-protomers of CcStP and Escherichia coli maltodextrin phosphorylase did not detectably associate to hybrid dimers, indicating that structural complementarity among the different subunits was lacking. Pyridoxal-reconstituted CcStP was inactive but approximately 60% and 5% of wild-type activity could be rescued at pH 7.5 by phosphate (3 mm) and phosphite (5 mm), respectively. pH effects on catalytic rates were different for the native enzyme and pyridoxal-phosphorylase bound to phosphate and could reflect the differences in pK(a) values for the cofactor 5'-phosphate and the exogenous oxyanion.  相似文献   

16.
The 31P nuclear magnetic resonance (NMR) spectrum of the phosphate in free pyridoxal or pyridoxamine phosphate reveals a resonance signal that is coupled to the methylene protons of the 5-CH2 with JHP of 6.0 +/- 0.3 Hz. Proton noise decoupling results in a single signal with a pH-dependent chemical shift with deprotonation of the phosphate resulting in a shift of the 31P resonance to lower fields. A single 31P NMR signal at a frequency corresponding to fully ionized phosphate monoesters is observed in aspartate-transaminase-bound pyridoxal or pyridoxamine phosphate. The 31P resonance in the holotransaminase is pH-independent and is unaffected by saturating concentrations of substrates or inhibitors. Only denaturation with 6 M guanidine with HCl results in changes in the 31P of the holoenzyme. It appears that the phosphate group of pyridoxal phosphate is bound to a positive pocket in the holoenzyme and remains fully ionized in the pH range of 5.6 to 9.2. The phosphate-binding properties are present even in the apoenzyme which is able to bind inorganic phosphate which then can be displaced by pyridoxal or pyridoxamine phosphate in the process of holoenzyme formation.  相似文献   

17.
In order to determine the ionization state of the 5'-phosphate of bound pyridoxal phosphate, a Fourier transform infrared spectroscopic study of cytosolic aspartate aminotransferase has been carried out. Dianionic and monoanionic phosphate monoesters give rise to two bands each in the infrared spectrum [Shimanouchi, T., Tsuboi, M., & Kyogoku, Y. (1964) Adv. Chem. Phys. 8, 435-498]. These bands can be identified in infrared spectra of the free coenzyme in solution. Due to interfering bands arising from the protein, only the band assigned to the symmetric stretching of the dianionic phosphate is observed in holoenzyme solutions. The integrated intensity of this band does not change with pH in the range 5.3-8.6, while for free pyridoxal phosphate, the integrated intensity of the same band changes with pH according to the pK value expected for the 5'-phosphate group in solution. Moreover, the value of the integrated intensity for the bound cofactor is close to the value given by free cofactor at pH 8-9. These results suggest that the 5'-phosphate of the bound cofactor remains mostly dianionic throughout the investigated pH range and disfavor other interpretations in terms of ionization of the phosphate group on the basis of the nuclear magnetic resonance 31P chemical shift-pH titration curve of holoenzyme [Schnackerz, K. D. (1984) in Chemical and Biological Aspects of Vitamin B6 Catalysis (Evangelopoulos, E. A., Ed.) Part A, pp 195-208, Alan R. Liss, New York].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the chloroplast of Chlamydomonas reinhardtii is part of a complex that also includes phosphoribulokinase (PRK) and CP12. We identified two residues of GAPDH involved in protein-protein interactions in this complex, by changing residues K128 and R197 into A or E. K128A/E mutants had a Km for NADH that was twice that of the wild type and a lower catalytic constant, whatever the cofactor. The kinetics of the mutant R197A were similar to those of the wild type, while the R197E mutant had a lower catalytic constant with NADPH. Only small structural changes near the mutation may have caused these differences, since circular dichroism and fluorescence spectra were similar to those of wild-type GAPDH. Molecular modelling of the mutants led to the same conclusion. All mutants, except R197E, reconstituted the GAPDH-CP12 subcomplex. Although the dissociation constants measured by surface plasmon resonance were 10-70-fold higher with the mutants than with wild-type GAPDH and CP12, they remained low. For the R197E mutation, we calculated a 4 kcal/mol destabilizing effect, which may correspond to the loss of the stabilizing effect of a salt bridge for the interaction between GAPDH and CP12. All the mutant GAPDH-CP12 subcomplexes failed to interact with PRK and to form the native complex. The absence of kinetic changes of all the mutant GAPDH-CP12 subcomplexes, compared to wild-type GAPDH-CP12, suggests that mutants do not undergo the conformation change essential for PRK binding.  相似文献   

19.
Misenheimer TM  Sheehan JP 《Biochemistry》2010,49(46):9997-10005
Supersulfated low molecular weight heparin (ssLMWH) inhibits the intrinsic tenase (factor IXa-factor VIIIa) complex in an antithrombin-independent manner. Recombinant factor IXa with alanine substitutions in the protease domain (K126A, N129A, K132A, R165A, R170A, N178A, R233A) was assessed with regard to heparin affinity in solution and ability to regulate protease activity within the factor IXa-phospholipid (PL) and intrinsic tenase complexes. In a soluble binding assay, factor IXa K126A, K132A, and R233A dramatically (10-20-fold) reduced ssLMWH affinity, while factor IXa N129A and R165A moderately (5-fold) reduced affinity relative to wild type. In the factor IXa-PL complex, binding affinity for ssLMWH was increased 4-fold, and factor X activation was inhibited with a potency 7-fold higher than predicted for wild-type protease-ssLMWH affinity in solution. In the intrinsic tenase complex, ssLMWH inhibited factor X activation with a 4-fold decrease in potency relative to wild-type factor IXa-PL. The mutations increased resistance to inhibition by ssLMWH in a similar fashion for both enzyme complexes (R233A > K126A > K132A/R165A > N129A/N178A/wild type) except for factor IXa R170A. This protease had ssLMWH affinity and potency for the factor IXa-PL complex similar to wild-type protease but was moderately resistant (6-fold) to inhibition in the intrinsic tenase complex based on increased cofactor affinity. These results are consistent with conformational regulation of the heparin-binding exosite and macromolecular substrate catalysis by factor IXa. An extensive overlap exists between the heparin and factor VIIIa binding sites on the protease domain, with residues K126 and R233 dominating the heparin interaction and R165 dominating the cofactor interaction.  相似文献   

20.
B. Surek  A. Heilbronn  A. Austen  E. Latzko 《Planta》1985,165(4):507-512
Homogeneous phosphoribulokinase (PRK; ATP: d-ribulose-5-phosphate 1-phosphotransferase, EC 2.7.1.19) was isolated from wheat leaves with a specific activity of 15 kat mg-1 protein. The purification included ammonium sulfate cuts, isoelectric precipitation, and hydrophobic and affinity chromatography on pentylagarose and Blue Sepharose CL 6B, respectively. Gel filtration of the purified enzyme yielded a 83000 Da protein. Subunits of about 42000 Da were estimated from sodium dodecyl sulfate-polyacrylamide gels. Wheat leaf PRK was stable for at least four weeks when stored at 4°C. Saturation curves for ribulose 5-phosphate (Ru5P) and ATP followed Michaelis-Menten kinetics (K m values: K m Ru5P=50–80 M; K m ATP=70 M). The saturation curve for MgCl2 was sigmoidal (half-maximal velocity <0.5 mM). The affinity for Ru5P, ATP and Mg2+ was not affected by pH changes comparable to pH shifts in the stroma. In contrast to chloroplast fructose-bisphosphatase (Zimmermann et al. 1976, Eur. J. Biochem. 70, 361–367) the affinity for ligands remained unchanged in the dithiothreitol-activated and in the non-activated state. The activity of PRK was increasingly sensitive to inhibition by 3-phosphoglyceric acid with decreasing pH below pH 8.0.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - PRK phosphoribulokinase - Ru5P ribulose-5-phosphate - SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号