首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was the development of mucoadhesive vaginal tablets designed for the local controlled release of acriflavine, an antimicrobial drug used as a model. The tablets were prepared using drug-loaded chitosan microspheres and additional excipients (methylcellulose, sodium alginate, sodium carboxymethylcellulose, or Carbopol 974). The microspheres were prepared by a spray-drying method, using the drug to polymer weight ratios 1:1 and 1:2 and were characterized in terms of morphology, encapsulation efficiency, and in vitro release behavior, as MIC (Minimum Inhibitory Concentration), MBC (Minimum Bacterial Concentration), and killing time (KT). The tablets were prepared by direct compression, characterized by in vitro drug release and in vitro mucoadhesive tests. The microparticles have sizes of 4 to 12 microm; the mean encapsulation yields are about 90%. Acriflavine, encapsulated into the polymer, maintains its antibacterial activity; killing time of the encapsulated drug is similar to that of the free drug. In vitro release profiles of tablets show differences depending on the excipient used. In particular Carbopol 974, which is highly cross-linked, is able to determine a drug-controlled release from the matrix tablets for more than 8 hours. The in vitro adhesion tests, carried out on the same formulation, show a good adhesive behavior. The formulation containing microspheres with drug to polymer weight ratios of 1:1 and Carbopol 974 is characterized by the best release behavior and shows good mucoadhesive properties. These preliminary data indicate that this formulation can be proposed as a mucoadhesive vaginal delivery system for the controlled release of acriflavine.  相似文献   

2.
Poorly water-soluble drugs such as cefpodoxime proxetil (400 μg/ml) offer a challenging problem in drug formulation as poor solubility is generally associated with poor dissolution characteristics and thus poor oral bioavailability. According to these characteristics, preparation of cefpodoxime proxetil microparticle has been achieved using high-speed homogenization. Polymers (methylcellulose, sodium alginate, and chitosan) were precipitated on the surface of cefpodoxime proxetil using sodium citrate and calcium chloride as salting-out agents. The pure drug and the prepared microparticles with different concentrations of polymer (0.05–1.0%) were characterized in terms of solubility, drug content, particle size, thermal behavior (differential scanning calorimeter), surface morphology (scanning electron microscopy), in vitro drug release, and stability studies. The in vivo performance was assessed by pharmacokinetic study. The dissolution studies demonstrate a marked increase in the dissolution rate in comparison with pure drug. The considerable improvement in the dissolution rate of cefpodoxime proxetil from optimized microparticle was attributed to the wetting effect of polymers, altered surface morphology, and micronization of drug particles. The optimized microparticles exhibited excellent stability on storage at accelerated condition. The in vivo studies revealed that the optimized formulations provided improved pharmacokinetic parameter in rats as compared with pure drug. The particle size of drug was drastically reduced during formulation process of microparticles.  相似文献   

3.
Ray S  Maiti S  Sa B 《AAPS PharmSciTech》2008,9(1):295-301
The objective of this study was to develop a multiunit sustained release dosage form of diltiazem using a natural polymer from a completely aqueous environment. Diltiazem was complexed with resin and the resinate-loaded carboxymethyl xanthan (RCMX) beads were prepared by interacting sodium carboxymethyl xanthan (SCMX), a derivatized xanthan gum, with Al+3 ions. The beads were evaluated for drug entrapment efficiency (DEE) and release characteristics in enzyme free simulated gastric fluid (SGF, HCl solution, pH 1.2) and simulated intestinal fluid (SIF, USP phosphate buffer solution, pH 6.8). Increase in gelation time from 5 to 20 min and AlCl3 concentration from 1 to 3% decreased the DEE respectively from 95 to 79% and 88.5 to 84.6%. However, increase in gum concentration from 1.5 to 2.5% increased the DEE from 86.5 to 90.7%. The variation in DEE was related to displacement of drug from the resinate by the gel forming Al+3 ions. While 75–82% drug was released in 2 h in SGF from various beads, 75 to 98% drug was released in 5 hour in SIF indicating the dependence of drug release on pH of dissolution media. Although the beads maintained their initial integrity throughout the dissolution process in both media, as evident from scanning electron microscopic studies, the faster release in SGF was accounted for higher swelling of the beads in SGF than in SIF. When release data (up to 60%) was fitted in power law expression, the drug release was found to be controlled by diffusion with simultaneous relaxation phenomena.  相似文献   

4.
Desai KG 《AAPS PharmSciTech》2005,6(2):E202-E208
Summary and Conclusions  The HACS/pectin blend microparticles were prepared by spray-drying technique to obtain effective targeted drug release to the colon. The mean particle size of the micro-particles (plain and blend) that were prepared in the present study was between 5.8 and 7.3 μm. The microparticles were positively charged (ζ potential was in the range of 20.3 to 30.8), and the encapsulation efficiency was between 80.1% and 94.7%. The blending of HACS with pectin improved the encapsulation efficiency and decreased the drug dissolution in the gastric condition (pH 1.2) from the pectin-based microparticles. Results of the drug release study indicated that the colonic-controlled drug delivery could be obtained from spray-dried HACS/pectin blend microparticles, and the drug release mechanism was found to be by diffusion or erosion or a combination of both. Published: September 30, 2005.  相似文献   

5.
Formation of inhalable microparticles containing rifampicin and poly(l-lactide) (L-PLA) by using supercritical anti-solvent process (SAS) was investigated. The solutions of drug and polymer in methylene chloride were sprayed into supercritical carbon dioxide. The effect of polymer content and operating conditions, temperature, pressure, carbon dioxide molar fraction, and concentration of solution, on product characteristics were studied. The prepared microparticles were characterized with respect to their morphology, particle size and size distribution, drug content, drug loading efficiency, and drug release characteristic. Discrete, spherical microparticles were obtained at high polymer:drug ratios of 7:3, 8:2, and 9:1. The shape of L-PLA microparticles became more irregular and agglomerated with decreasing polymer content. Microparticles with polymer content higher than 60% exhibited volumetric mean diameter less than 5 μm, but percent drug loading efficiency was relatively low. Drug-loaded microparticles containing 70% and 80% L-PLA showed a sustainable drug release property without initial burst release. Operating temperature level influenced on mean size and size distribution of microparticles. The operating pressure and carbon dioxide molar fraction in the range investigated were unlikely to have an effect on microparticle formation. An increasing concentration of feed solution provided larger size microparticles. Rifampicin-loaded L-PLA microparticles could be produced by SAS in a size range suitable for dry powder inhaler formulation.  相似文献   

6.
The objective of this work was to evaluate soy protein isolate (SPI) and acylated soy protein (SPA) as spray-drying encapsulation carriers for oral pharmaceutical applications. SPI acylation was performed by the Schotten–Baumann reaction. SPA, with an acylation rate of 41%, displayed a decrease in solubility in acidic conditions, whereas its solubility was unaffected by basic conditions. The drug encapsulation capacities of both SPI and SPA were tested with ibuprofen (IBU) as a model poorly soluble drug. IBU-SPI and IBU-SPA particles were obtained by spray-drying under eco-friendly conditions. Yields of 70 to 87% and microencapsulation efficiencies exceeding 80% were attained for an IBU content of 20 to 40% w/w, confirming the excellent microencapsulation properties of SPI and the suitability of the chemical modification. The in vitro release kinetics of IBU were studied in simulated gastrointestinal conditions (pH 1.2 and pH 6.8, 37°C). pH-sensitive release patterns were observed, with an optimized low rate of release in simulated gastric fluid for SPA formulations, and a rapid and complete release in simulated intestinal fluid for both formulations, due to the optimal pattern of pH-dependent solubility for SPA and the molecular dispersion of IBU in soy protein. These results demonstrate that SPI and SPA are relevant for the development of pH-sensitive drug delivery systems for the oral route.  相似文献   

7.
Different hydroxypropyl methylcellulose (HPMC)/anhydrous dibasic calcium phosphate (ADCP) matrix tablets have been developed aiming to evaluate the influence of both components ratio in the control release of a water-soluble drug (theophylline). In order to characterise the matrix tablets, swelling, buoyancy and dissolution studies have been carried out in different aqueous media (demineralised water, progressive pH medium, simulated gastric fluid, simulated intestinal fluid and simulated colonic fluid). The HPMC/ADCP ratio has turned out to be the determinant in the matrix behaviour: the HPMC characteristic swelling behaviour was modulated, in some cases, by the ADCP characteristic acidic dissolution. When the HPMC/ADCP ratio was ≥0.69, buoyancy, continuous swelling and low theophylline dissolution rate from the matrices (H1, H2 and H3) were observed in all dissolution media. Consequently, these formulations could be adequate as gastro-retentive drug delivery systems. Additionally, HPMC/ADCP ratio ≤0.11 (H5 and H6) induces a pH-dependent drug release which could be applied to design control drug release enteric formulations (with a suitable enteric coating). Finally, a HPMC/ADCP ratio between 0.11 and 0.69 (H4) yield a gastrointestinal controlled drug release, due to its time-dependent buoyancy (7 h) and a total drug delivery in 17 h in simulated colonic fluid.Key words: anhydrous dibasic calcium phosphate, hydroxypropyl methylcellulose, matrix tablets, oral controlled release, theophylline  相似文献   

8.
The objective of the present investigation was to reduce the bitterness with improved dissolution, in acidic medium (pH 1.2), of mefloquine hydrochloride (MFL). Microparticles were prepared by coacervation method using Eudragit E (EE) as polymer and sodium hydroxide as precipitant. A 32 full factorial design was used for optimization wherein the drug concentration (A) and polymer concentration (B) were selected as independent variables and the bitterness score, particle size and dissolution at various pH were selected as the dependent variables. The desirability function approach has been employed in order to find the best compromise between the different experimental responses. The model is further cross validated for bias. The optimized microparticles were characterized by FT-IR, DSC, XRPD and SEM. Bitterness score was evaluated by human gustatory sensation test. Multiple linear regression analysis revealed that the reduced bitterness of MFL can be obtained by controlling the dissolution of microparticles at pH 6.8 and increasing the EE concentration. The increase in polymer concentration leads to reduction in dissolution of microparticles at pH > 5 due to its insolubility. However the dissolution studies at pH 1.2 demonstrated enhanced dissolution of MFL from microparticles might be due to the high porosity of the microparticles, hydrophilic nature of the EE, and improved wettability, provided by the dissolved EE. The bitterness score of microparticles was decreased to zero compared to 3+ of pure ARM. In conclusion the bitterness of MFL was reduced with improved dissolution at acidic pH.  相似文献   

9.
The purpose of this study was to develop poly(d,1-lactic-coglycolic acid) (PLGA)-based anastrozole microparticles for treatment of breast cancer. An emulsion/extraction method was used to prepare anastrozole sustained-release PLGA-based biodegradable microspheres. Gas chromatography with mass spectroscopy detection was used for the quantitation of the drug throughout the studies. Microparticles were formulated and characterized in terms of encapsulation efficiency, particle size distribution, surface morphology, and drug release profile. Preparative variables such as concentrations of stabilizer, drug-polymer ratio polymer viscosity, stirring rate, and ratio of internal to external phases were found to be important factors for the preparation of anastrozole-loaded PLGA microparticles. Fourier transform infrared with attenuated total reflectance (FTIR-ATR) analysis and differential scanning calorimetry (DSC) were employed to determine any interactions between drug and polymer. An attempt was made to fit the data to various dissolution kinetics models for multiparticulate systems, including the zero order, first order, square root of time kinetics, and biphasic models. The FTIR-ATR studies revealed no chemical interaction between the drug and the polymer. DSC results indicated that the anastrozole trapped in the microspheres existed in an amorphous or disordered-crystalline status in the polymer matrix. The highest correlation coefficients were obtained for the Higuchi model, suggesting a diffusion mechanism for the drug release. The results demonstrated that anastrozole microparticles with PLGA could be an alternative delivery method for the long-term treatment of breast cancer. Published: July 21, 2006  相似文献   

10.
This study reports on the preparation of chitosan (CS)/polyethylene glycol (PEG) hydrogel beads using sodium diclofenac (DFNa) as a model drug. Following the optimization of the polymer to drug ratio, the chitosan beads were modified by ionic crosslinking with sodium tripolyphosphate (TPP). The CS/PEG/DFNa beads obtained from a (w/w/w) ratio of 1/0.5/0.5 with crosslinking in 10% (w/v) TPP at pH 6.0 for 30 min yielded excellent DFNa encapsulation levels with over 90% loading efficiency. The dissolution profile of DFNa from CS/PEG/DFNa beads demonstrated that this formulation was able to maintain a prolonged drug release for approximately 8 h. Among the formulations tested, the CS/PEG/DFNa (1/0.5/1 (w/w/w)) beads crosslinked with a combination of TPP (10% (w/v) for 30 min) and glutaraldehyde (GD) (5% (w/v)) were able to provide minimal DFNa release in the gastric and duodenal simulated fluids (pH 1.2 and 6.8, respectively) allowing for a principally gradual drug release over 24 h in the intestinal (jejunum and ileum) simulated fluid (pH 7.4). Thus, overall the CS/PEG beads crosslinked with TPP and GD look to be a promising and novel alternative gastrointestinal drug release system.  相似文献   

11.
The aim of this study was to formulate and characterize a microparticulate system of progestin-only contraceptive. Another objective was to evaluate the effect of gamma radio-sterilization on in vitro and in vivo drug release characteristics. Levonorgestrel (LNG) microspheres were fabricated using poly(lactide-co-glycolide) (PLGA) by a novel solvent evaporation technique. The formulation was optimized for drug/polymer ratio, emulsifier concentration, and process variables like speed of agitation and evaporation method. The drug to polymer ratio of 1:5 gave the optimum encapsulation efficiency. Speed of agitation influenced the spherical shape of the microparticles, lower speeds yielding less spherical particles. The speed did not have a significant influence on the drug payloads. A combination of stabilizers viz. methyl cellulose and poly vinyl alcohol with in-water solvent evaporation technique yielded microparticles without any free drug crystals on the surface. This aspect significantly eliminated the in vitro dissolution “burst effect”. The residual solvent content was well within the regulatory limits. The microparticles passed the test for sterility and absence of pyrogens. In vitro dissolution conducted on the product before and after gamma radiation sterilization at 2.5 Mrad indicated no significant difference in the drug release patterns. The drug release followed zero-order kinetics in both static and agitation conditions of dissolution testing. The in vivo studies conducted in rabbits exhibited LNG release up to 1 month duration with drug levels maintained within the effective therapeutic window.  相似文献   

12.
Garg Y  Pathak K 《AAPS PharmSciTech》2011,12(2):673-682
The purpose of research was to develop a mucoadhesive multiparticulate sustained drug delivery system of pravastatin sodium, a highly water-soluble and poorly bioavailable drug, unstable at gastric pH. Mucoadhesive microparticles were formulated using eudragit S100 and ethyl cellulose as mucoadhesive polymers. End-step modification of w/o/o double emulsion solvent diffusion method was attempted to improve the purity of the product, that can affect the dose calculations of sustained release formulations and hence bioavailability. Microparticles formed were discrete, free flowing, and exhibited good mucoadhesive properties. DSC and DRS showed stable character of drug in microparticles and absence of drug polymer interaction. The drug to polymer ratio and surfactant concentration had significant effect on mean particle size, drug release, and entrapment efficiency. Microparticles made with drug: eudragit S100 ratio of 1:3 (F6) exhibited maximum entrapment efficiency of 72.7% and ex vivo mucoadhesion time of 4.15 h. In vitro permeation studies on goat intestinal mucosa demonstrated a flux rate (1,243 μg/cm2/h) that was 169 times higher than the flux of pure drug. The gastric instability problem was overcome by formulating the optimized microparticles as enteric-coated capsules that provided a sustained delivery of the highly water-soluble drug for 12 h beyond the gastric region. The release mechanism was identified as fickian diffusion (n = 0.4137) for the optimized formulation F6. Conclusively, a drug delivery system was successfully developed that showed delayed and sustained release up to 12 h and could be potentially useful to overcome poor bioavailability problems associated with pravastatin sodium.  相似文献   

13.
Supercritical fluid technology offers several advantages in preparation of microparticles. These include uniformity in particle size, morphology, and drug distribution without degradation of the product. One of the recent advantages is preparation of porous aerogel carrier with proper aerodynamic properties. In this study, we aimed to prepare chitosan aerogel microparticles using supercritical fluid (SCF) technology and compare that with microparticles produced by freeze drying (FD). Loading the prepared carriers with a model drug (salbutamol) was also performed. Comparisons of the particle properties and physicochemical characterizations were undertaken by evaluating particle size, density, specific surface area, and porosity. In vitro drug release studies were also investigated. The effect of many variables, such as molecular weight of chitosan oligomers, concentrations of chitosan, and concentrations of tripolyphosphate on the release, were also investigated. Chitosan aerogels were efficiently produced by SCF technology with an average particle size of 10 μm with a tapped density values around 0.12 g/mL, specific surface area (73–103) m2/g, and porosity (0.20–0.29) cc/g. Whereas, microparticles produced by FD method were characterized as cryogels with larger particle size (64 microns) with clear cracking at the surface. Sustained release profile was achieved for all prepared microparticles of salbutamol produced by the aforementioned methods as compared with pure drug. The results also demonstrates that chitosan molecular weight, polymer concentration, and tripolyphosphate concentration affected the release profile of salbutamol from the prepared microparticles. In conclusion, SCF technology was able to produce chitosan aerogel microparticles loaded with salbutamol that could be suitable for pulmonary drug delivery system.KEY WORDS: aerodynamic, aerogels, chitosan, salbutamol, supercritical fluid technology  相似文献   

14.
Drug-polymer microparticles produced by supercritical assisted atomization   总被引:4,自引:0,他引:4  
The supercritical assisted atomization (SAA) was proposed as a new technique to produce composite microparticles for drug controlled release. Ampicillin trihydrate and chitosan were selected as model drug and carrier, respectively, and 1% v/v acetic acid aqueous solution was used as solvent. The effect of the polymer/drug ratio on particle morphology and drug release rate was evaluated. SEM analysis indicated that non-coalescing spherical microparticles formed by chitosan/ampicillin were produced by SAA. All coprecipitates produced have a sharp particle distribution, with diameters ranging between about 0.1 and 6 microm. SAA composite microparticles were characterized by X-ray, DSC, EDX and UV-vis analysis. A solid solution of the chitosan and ampicillin was produced and a stabilizing effect of the polymer on the drug has resulted that protects ampicillin from thermal degradation. A prolonged release from SAA coprecipitates with respect to raw drug and physical mixtures of chitosan and ampicillin was obtained; moreover, the polymer/drug ratio has revealed to be a controlling parameter for drug release. Drug release mechanisms characteristic of swelling-controlled systems were observed, with ampicillin release depending on both relaxation and diffusive mechanisms. An empirical binomial equation was used to describe experimental data, showing a fair good agreement with ampicillin release data if both the relaxational and the diffusional parameters are function of the polymer/drug ratio.  相似文献   

15.
Halder A  Sa B 《AAPS PharmSciTech》2006,7(2):E105-E112
The purpose of this study was to examine the suitability of polystyrene-coated (PS-coated) microcapsules of drug-resin complex for achieving prolonged release of diltiazem-HCl, a highly water-soluble drug, in simulated gastric and intestinal fluid. The drug was bound to Indion 254, a cation-exchange resin, and the resulting resinate was microencapsulated with PS using an oil-in-water emulsion-solvent evaporation method. The effect of various formulation parameters on the characteristics of the microcapsules was studied. Mean diameter and encapsulation efficiency of the microcapsules rose with an increase in the concentration of emulsion stabilizer and the coat/core ratio, while the same characteristics tended to decrease with an increase in the volume of the organic disperse phase. The desorption of drug from the uncoated resinate was quite rapid and independent of the pH of the dissolution media. On the other hand, the drug release from the microcapsules was prolonged for different periods of time depending on the formulation parameters and was also found to be independent of the pH of the dissolution media. Both the encapsulation efficiency and the retardation of drug release were found to be dependent on the uniformity of coating, which in turn was influenced by the formulation parameters. Kinetic studies revealed that the desorption of drug from the resinate obeyed the typical particle diffusion process, whereas the drug release from the microencapsulated resinate followed the diffusion-controlled model in accordance with the Higuchi equation. PS appeared to be a suitable polymer to provide prolonged release of diltiazem independent of the pH of the dissolution media.  相似文献   

16.
The aim of this study was the development of a veterinary dosage form constituted by injectable biodegradable microspheres designed for the subcutaneous release of carboplatin, a chemotherapeutic drug. Poly(D,L-lactide) (PDLLA) microspheres were prepared by an emulsification/spray-drying method, using the drug-to-polymer weight ratios 1∶9 and 1∶5; blank microspheres (1% w/v) were prepared as a comparison. Microparticles were characterized in terms of morphology, encapsulation efficiency, and in vitro drug release behavior. In vivo tests were conducted on rats by subcutaneous injection of microsphere aqueous suspensions. Levels of carboplatin were evaluated both in the skin and in serum. The microparticles obtained had a spherical shape; particle size ranged from 5 to 7 μm, dependent on drug loading. Microspheres were able to control the in vitro release of the drug: approximately 90% to 100% of the carboplatin was released over 30 days. In vivo results showed that the microspheres were able to release high drug amounts locally, and sustained serum levels of drug were also achieved. Based on these results, carboplatin-loaded PDLLA microspheres may be useful for local delivery of the antineoplastic drug to the tumor, avoiding tumor recurrence in small animals, and may decrease the formation of distant metastases. Published: September 20, 2005  相似文献   

17.
In this study, peptide-loaded microparticles were prepared using an aerosol solvent extraction system (ASES) by employing supercritical carbon dioxide as an antisolvent. The effects of the molecular weight of poly(Llactide) (PLLA), poly(ethylene glycol) (PEG), the block length of methoxy poly(ethylene glycol)-b-poly(L-lactide) (mPEG-PLLA), the blending of PLLA and PEG, and the drug-to-polymer feed ratio on the formation of leuprolide acetate (LA)-loaded microparticles and their release characteristics were investigated. Scanning electron microscope observations showed that the LA-loaded polymer particles had a spherical morphology with a smooth surface. The entrapment efficiency of LA in the ASES-processed microparticles was found to be extremely high (about 99%), whereas the initial release rate of the LA-loaded microparticles was very low for PLLA. The release rate of LA was observed to increase as the PEG block length of mPEG-PLLA and/or the drug content in the microparticles increased. When PLLA was blended with PEG, the release rate of LA from the PLLA/PEG microparticles was significantly faster compared with the corresponding mPEG-PLLA copolymer.  相似文献   

18.
The objective of the present study was to investigate the effect of the pellet core materials isomalt, sugar, and microcrystalline cellulose on the in vitro drug release kinetics of coated sustained-release pellets as well as to evaluate the influence of different ratios of polymethacrylate copolymers exhibiting different permeability characteristics on the drug release rate. For characterization of the drug release process of pellets, the effect of osmolality was studied using glucose as an osmotically active agent in the dissolution medium. The pellet cores were layered with diclofenac sodium as model drug and coated with different ratios of Eudragit® RS30D and Eudragit® RL30D (ERS and ERL; 0:1 and 0.5:0.5 and 1:0 ratio) in a fluid bed apparatus. Physical characteristics such as mechanical strength, shape, and size proved that the inert cores were adequate for further processing. The in vitro dissolution tests were performed using a USP Apparatus I (basket method). The results demonstrated that, besides the ratio of the coating polymers (ERS/ERL), the release mechanism was also influenced by the type of starter core used. Sugar- and isomalt-type pellet cores demonstrated similar drug release profiles.  相似文献   

19.
Inclusion complexes between dexamethasone acetate (DMA), a poorly water soluble drug, and β-cyclodextrin (βCD) were obtained to improve the solubility and dissolution rate of this drug. Phase-solubility profile indicated that the solubility of DMA was significantly increased in the presence of βCD (33-fold) and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Solid complexes prepared by different methods (kneading, coevaporation, freeze drying) and physical mixture were characterized by differential scanning calorimetry, thermogravimetry, infrared absorption and optical microscopy. Preparation methods influenced the physicochemical properties of the products. The dissolution profiles of solid complexes were determined and compared with those DMA alone and their physical mixture, in three different mediums: simulated gastric fluid (pH 1.2), simulated intestinal fluid (pH 7.4) and distilled water. The dissolution studies showed that in all mediums DMA presented an incomplete dissolution even in four hours. In contrast, the complexes formed presented a higher dissolution rate in simulated gastric fluid (SGF pH 1.2), which indicate that these have different ionization characteristics. According to the results, the freeze–dried and kneaded products exhibited higher dissolution rates than the drug alone, in all the mediums.  相似文献   

20.
The objective of this work was to study dissolution enhancement efficiency and solid dispersion formation ability of hydrophilic swellable polymers such as sodium carboxymethyl cellulose (Na-CMC), sodium starch glycolate (SSG), pregelatinized starch (PGS), and hydroxypropylmethyl cellulose (HPMC) with carbamazepine using 32 full factorial design for each of the polymers. Solid dispersions of carbamazepine were prepared using solvent evaporation method with around 70% solvent recovery. The independent variables were the amount of polymer and organic solvent. The dependent variables assessed were percentage drug dissolved at various time points and dispersion efficiency (ie, in terms of particle size of solid dispersion). Solid dispersions were evaluated for percentage drug dissolved, wettability, differential scanning calorimetry, scanning electron microscopy, and angle of repose. Multiple linear regression of results obtained led to equations, which generated contour plots to relate the dependent variables. Similarity factor and mean dissolution time were used to compare dissolution patterns obtained in distilled water and simulated gastric fluid United States Pharmacopeia (USP) XXVI of pH 1.2. Maximum drug dissolution was obtained with polymer order Na-CMC>SSG>PGS>HPMC. Particle size of drug was reduced ≈ 10–15, 3–5, 5–7, and 10–25 times in Na-CMC, SSG, PGS, and HPMC solid dispersions, respectively; whereas wettability of solid dispersions was found in the order of Na-CMC>HPMC>PGS>SSG. Angle of repose was found to be in the range of 29° to 35° for all solid dispersions, which shows good flowability characteristics. HPMC showed increase in drug dissolution up to an optimized level; however, furthers increase in its concentration decreased drug dissolution. Published: April 6, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号