首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accessibility to trypsin of "core" histones within the dimer (H2A-H2B), tetramer (H3-H4)2, octamer (H2A-H2B-H3-H4)2 and in chromatin was studied. It was shown that the hydrolysis of histones H2A and H2B within the dimer and octamer occurs in essentially the same way. The tetramer (H2-H4)2 becomes more compact with an increase in the ionic strength. Some of the tetramer (H3-H4)2 sites within the octamer are protected against trypsin. It was demonstrated that in terms of the histone accessibility to trypsin chromatin can exist in three states, i.e., tightly packed (in the presence of histone H1 and bivalent cations), intermediate (in the absence of histone H1 or bivalent cations) and folded (in the absence of histone H1 and bivalent cations). The folding of histones in neither of these chromatin states coincides with that within the octamer in 2M NaCl.  相似文献   

2.
Spectropolarimetric analysis of the core histone octamer and its subunits   总被引:3,自引:0,他引:3  
The secondary structure of the calf thymus core histone octamer, (H2A-H2B-H3-H4)2, and its two physiological subunits, the H2A-H2B dimer and (H3-H4)2 tetramer, was analyzed by ORD spectropolarimetry as a function of temperature and solvent ionic strength within the ranges of these experimental parameters where assembly of the core histone octamer exhibits pronounced sensitivity. While the secondary structure of the dimer is relatively stable from 0.1 to 2.0 M NaCl, the secondary structure of the tetramer exhibits complex changes over this range of NaCl concentrations. Both complexes exhibit only modest responses to temperature changes. ORD spectra of very high and very low concentrations of stoichiometric mixtures of the core histones revealed no evidence of changes in the ordered structure of the histones as a result of the octamer assembly process at NaCl concentrations above 0.67 M, nor were time-dependent changes detected in the secondary structure of tetramer dissolved in low ionic strength solvent. The secondary structure of the chicken erythrocyte octamer dissolved in high concentrations of ammonium sulfate, including those of our crystallization conditions, was found to be essentially unchanged from that in 2 M NaCl when examined by both ORD and CD spectropolarimetry. The two well-defined cleaved products of the H2A-H2B dimer, cH2A-H2B and cH2A-cH2B, exhibited reduced amounts of ordered structure; in the case of the doubly cleaved moiety cH2A-cH2B, the reductions were so pronounced as to suggest marked structural rearrangements.  相似文献   

3.
4.
5.
Conn KL  Hendzel MJ  Schang LM 《Journal of virology》2011,85(24):13234-13252
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.  相似文献   

6.
The contact-site cross-linkers tetranitromethane, UV light, formaldehyde, and a monofunctional imido ester have been used to generate a collection of histone-histone dimers and trimers from nuclei and chromatin. Four different H2B-H4 dimers have been isolated. Preliminary CNBr peptide mapping has shown that all are cross-linked at different positions that are apparently clustered within the C-terminal regions of these histones. Similarily, two different H2A-H2B dimers and two different H2A-H2B-H4 trimers have been partially characterized. The data suggest a functional map for H2B in which the N-terminal third interacts with DNA, the middle third interacts with H2A, and the C-terminal third interacts with H4. We hope, by pursuing this type of analysis, to develop a detailed understanding of each histone-histone binding interaction through saturation cross-linking of the binding sites.  相似文献   

7.
The protein composition of the liver chromatin has been studied by two techniques for fractionation of histones. The "lability" fraction of histones H2A-H2B is revealed. In these fractions histones H2B have many modified forms and they are not included into octamer (H3, H4, H2A, H2B)2. Young animals rather than old ones have much quantitative subfractions of histone H2B. The "lability" fraction of histones H2A-H2B is stated to be very significant in the activated and repressed chromatin structure.  相似文献   

8.
Analysis of the binding of C-reactive protein to chromatin subunits   总被引:17,自引:0,他引:17  
C-reactive protein (CRP) is an acute phase serum protein in man. The functional activities of CRP, like Ig, include complement activation and enhancement of phagocytosis. CRP binding to several substrates, including phosphocholine, individual denatured histones, and chromatin, has been demonstrated. We previously demonstrated that CRP binding to chromatin is dependent on the presence of histone H1, despite the fact that CRP binds to purified individual histones H2A and H2B, as well as to H1. In this report we examined the binding of CRP to native sub-nucleosomal chromatin fragments. CRP binding to the H2A-H2B dimer and (H3-H4)2 tetramer was demonstrated and these reactions were inhibited by phosphocholine. However, no binding to the subnucleosome complexes (H2A-H2B)-DNA and (H3-H4)2-DNA was seen. Similarly, CRP binding to H1 was eliminated when H1 was reconstituted with DNA. The reconstitution of H1-depleted chromatin with H1 restored CRP binding. CRP binding to nucleosome core particles, as previously demonstrated by others, was confirmed. Therefore, the interaction of CRP with individual core histones does not appear to be responsible for the binding of CRP to native chromatin. However, binding to core particles could be mediated by differentially exposed determinants on H2A and H2B.  相似文献   

9.
A simple and fast method for isolation of large amounts of the histone octamer (H2A-H2B-H3-H4)2 is proposed. This method is based on chromatin adsorption by hydroxyapatite with subsequent extraction of the histone octamer with 50 mM sodium-phosphate buffer containing 4 M NaCl pH 8.0. It was shown that the properties of the histone octamer isolated by this extractive procedure are identical with those of the histone octamer obtained by elution on a Sephadex G-100 column. The histone tetramer (H3-H4)2 and dimer (H2A-H2B) were obtained after gel filtration on Sephadex G-100 in 50 mM sodium-acetate (pH 5.6).  相似文献   

10.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

11.
Mizuguchi G  Xiao H  Wisniewski J  Smith MM  Wu C 《Cell》2007,129(6):1153-1164
The budding yeast histone H3 variant, Cse4, replaces conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs assembly of the kinetochore, a multiprotein complex mediating chromosome segregation. We have identified Scm3, a nonhistone protein that colocalizes with Cse4 and is required for its centromeric association. Bacterially expressed Scm3 binds directly to and reconstitutes a stoichiometric complex with Cse4 and histone H4 but not with conventional histone H3 and H4. A conserved acidic domain of Scm3 is responsible for directing the Cse4-specific interaction. Strikingly, binding of Scm3 can replace histones H2A-H2B from preassembled Cse4-containing histone octamers. This incompatibility between Scm3 and histones H2A-H2B is correlated with diminished in vivo occupancy of histone H2B, H2A, and H2AZ at centromeres. Our findings indicate that nonhistone Scm3 serves to assemble and maintain Cse4-H4 at centromeres and may replace histone H2A-H2B dimers in a centromere-specific nucleosome core.  相似文献   

12.
NASP has been described as a histone H1 chaperone in mammals. However, the molecular mechanisms involved have not yet been characterized. Here, we show that this protein is not only present in mammals but is widely distributed throughout eukaryotes both in its somatic and testicular forms. The secondary structure of the human somatic version consists mainly of clusters of α-helices and exists as a homodimer in solution. The protein binds nonspecifically to core histone H2A-H2B dimers and H3-H4 tetramers but only forms specific complexes with histone H1. The formation of the NASP-H1 complexes is mediated by the N-and C-terminal domains of histone H1 and does not involve the winged helix domain that is characteristic of linker histones. In vitro chromatin reconstitution experiments show that this protein facilitates the incorporation of linker histones onto nucleosome arrays and hence is a bona fide linker histone chaperone.  相似文献   

13.
Oncohistone mutations are crucial drivers for tumorigenesis, but how a living organism governs the loss-of-function oncohistone remains unclear. We generated a histone H2B triple knockout (3KO) strain in Caenorhabditis elegans, which decreased the embryonic H2B, disrupted cell divisions, and caused animal sterility. By performing genetic suppressor screens, we uncovered that mutations defective in the histone H3-H4 chaperone UNC-85 restored H2B 3KO fertility by decreasing chromatin H3-H4 levels. RNA interference of other H3-H4 chaperones or H3 or H4 histones also rescued H2B 3KO sterility. We showed that blocking H3-H4 chaperones recovered cell division in C. elegans carrying the oncohistone H2BE74K mutation that distorts the H2B-H4 interface and induces nucleosome instability. Our results indicate that reducing chromatin H3-H4 rescues the dysfunctional H2B in vivo and suggest that inhibiting H3-H4 chaperones may provide an effective therapeutic strategy for treating cancers resulting from loss-of-function H2B oncohistone.  相似文献   

14.
The interactions of H1 (H1A, H1B), H2A, H2B, H3, H4, and H5 with phenyl cross-linked agarose were studied. Procedures are described whereby all six histones can be bound, released, and fractionated by using appropriate salt concentrations or pH. The binding can be totally abolished by inclusion of hydrophobic disrupting agents. Control experiments with nonderivated cross-linked agarose ruled out a passive aggregation-disaggregation phenomenon governing the binding patterns. The absorption sequence based on the identification and quantitation of individual histones from either unfractionated (whole) histone or separate histone classes is as follows: H3 greater than or equal to H4 greater than H2B greater than or equal to H5 greater than or equal to H2A greater than H1A greater than or equal to H1B. The order differs only slightly from the reverse of the desorption sequence, H1B less than or equal to H1A less than or equal to H5 less than H2A less than or equal to H3. Preferential interaction of H2A-H2B, H3-H4, and H2A-H2B-H4 occur; these interactions can modify the original relative affinity of each individual component for the matrix. The variability in matrix affinity appears to involve simple stoichiometry of the histone components.  相似文献   

15.
The secondary structure of histones H1, H2A, and H4 (F1, F2a2, and F2a1) has been quantitatively studied in heavy water (2H2O) solutions in a wide range of histone concentration, p2H, and concentration of sodium chloride using an improved infrared spectroscopy method. Under all conditions there are about 5--10% of alpha helix. Conditions favourable for aggregation induce formation of antiparallel pleated sheet structure to an extent of about 15% in H1 and H2A and about 30% in H4. When the p2H and concentration of NaCl are in the physiological range, there is the same content of this structure in H2A and H4 and none in H1.  相似文献   

16.
H G Martinson  R J True 《Biochemistry》1979,18(6):1089-1094
We have studied the relative stabilities to urea denaturation of histone-histone binding interactions as they occur both in chromatin and in histone complexes free in solution. We have used the two zero-length contact-site cross-linking agents, tetranitromethane and UV light, to measure the relative degree of H2B-H4 and H2A-H2B association under various conditions. The two interactions were disrupted coordinately when nuclei were treated with increasing concentrations of urea. In contrast, when histone complex in 2 M NaCl were treated with urea, the H2B-H4 interaction was found to be much less stable than the H2A-H2B interaction. We have shown previously that nucleosomes unfold at low ionic strengths such that the H2B-H4 but not the H2A-H2B interaction is broken in the process. We speculate that the preferential rupture of the H2B-H4 contact is of physiological significance.  相似文献   

17.
Banks DD  Gloss LM 《Biochemistry》2003,42(22):6827-6839
To compare the stability of structurally related dimers and to aid in understanding the thermodynamics of nucleosome assembly, the equilibrium stabilities of the recombinant wild-type H3-H4 tetramer and H2A-H2B dimer have been determined by guanidinium-induced denaturation, using fluorescence and circular dichroism spectroscopies. The unfolding of the tetramer and dimer are highly reversible. The unfolding of the H2A-H2B dimer is a two-state process, with no detected equilibrium intermediates. The H3-H4 tetramer is unstable at moderate ionic strengths (mu approximately 0.2 M). TMAO (trimethylamine-N-oxide) was used to stabilize the tetramer; the stability of the H2A-H2B dimer was determined under the same solvent conditions. The equilibrium unfolding of H3-H4 was best described by a three-state mechanism, with well-folded H3-H4 dimers as a populated intermediate. When compared to H2A-H2B, the H3-H3 tetramer interface and the H3-H4 histone fold are strikingly less stable. The free energy of unfolding, in the absence of denaturant, for the H3-H4 and H2A-H2B dimers are 12.4 and 21.0 kcal mol(-)(1), respectively, in 1 M TMAO. It is postulated that the difference in stability between the histone dimers, which contain the same fold, is the result of unfavorable tertiary interactions, most likely the partial to complete burial of three salt bridges and burial of a charged hydrogen bond. Given the conservation of these buried interactions in histones from yeast to mammals, it is speculated that the H3-H4 tetramer has evolved to be unstable, and this instability may relate to its role in nucleosome dynamics.  相似文献   

18.
19.
20.
V Jackson 《Cell》1978,15(3):945-954
A new procedure is described which allows selective reversal of formaldehyde cross-linking in both histone-histone and histone-DNA of nuclei isolated from calf thymus. All ten possible dimers of the four non-H1 histones, H3, H2B, H2A and H4, are observed, the major dimers being H3-H3, H3-H2A, H2B-H2A, H2a-H2A and two separate dimers of H2B-H4. Although oligomers of the non-H1 histones are formed by prolonged treatment with this reagent, 50% of the histones continue to remain resistant to cross-linking with each other. For those histones which cross-linking with each other. For those histones which cross-link, the site of cross-linking within the molecules is located in the "core" (trysin-resistant) regionand therfore indicates proximities for these molecules within the nucleosome. The core region also cross-links to DNA, indicating intimate interactions between this region in all the non-H1 histones with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号