首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Signaling by members of the epidermal growth factor receptor family plays an important role in breast development and breast cancer. Earlier work suggested that one of these receptors, ErbB4, is coupled to unique responses in this tissue. To determine the function of ErbB4 signaling in the normal mouse mammary gland, we inactivated ErbB4 signaling by expressing a COOH terminally deleted dominant-negative allele of ErbB4 (ErbB4DeltaIC) as a transgene in the mammary gland. Despite the expression of ErbB4DeltaIC from puberty through later stages of mammary development, an ErbB4DeltaIC-specific phenotype was not observed until mid-lactation. At 12-d postpartum, lobuloalveoli expressing ErbB4DeltaIC protein were condensed and lacked normal lumenal lactation products. In these lobuloalveoli, beta-casein mRNA, detected by in situ hybridization, was normal. However, whey acidic protein mRNA was reduced, and alpha-lactalbumin mRNA was undetectable. Stat5 expression was detected by immunohistochemistry in ErbB4DeltaIC-expressing tissue. However, Stat5 was not phosphorylated at Y694 and was, therefore, probably inactive. When expressed transiently in 293T cells, ErbB4 induced phosphorylation of Stat5. This phosphorylation required an intact Stat5 SH2 domain. In summary, our results demonstrate that ErbB4 signaling is necessary for mammary terminal differentiation and Stat5 activation at mid-lactation.  相似文献   

2.
Cadherins comprise a family of cell-cell adhesion proteins critical to the architecture and function of tissues. Expression of family members E-, N-, and P-cadherin is regulated in a spatial and temporal fashion in the developing and adult organism. Using in vivo and in vitro experimental systems, perturbation of cadherin expression by genetic deletion, overexpression, mutant dominant-negative constructs, and, to a lesser degree, expression of an inappropriate cadherin have all been shown to alter embryogenesis, tissue architecture, and cell behavior. Here we studied how expression of an inappropriate cadherin affects the adult mouse mammary gland. Human P-cadherin was expressed in mammary epithelial cells under control of the mouse mammary tumor virus (MMTV) promoter, and the effect on mammary gland behavior was studied. Typically, E-cadherin is expressed by mammary epithelial cells, whereas P-cadherin is found in myoepithelial cells and cap cells of the ductal terminal end bud. However, breast cancers frequently express P-cadherin, even though they are thought to arise from epithelial cells, and it is a marker of poor prognosis. We developed two independent transgenic mouse lines that exhibited high levels of P-cadherin protein expression in the mammary epithelium. P-cadherin was detected in most, but not all, luminal epithelial cells, and was appropriately localized to cell-cell borders. It was detected in the mammary glands of virgin, pregnant, lactating, post-lactation, and aged parous female mice. Despite the robust and widespread expression of an inappropriate cadherin, no effect was observed on mammary gland morphogenesis, architecture, lactation, or involution in transgenic mice compared to wild-type mice. No mammary tumors formed spontaneously in either wild-type or transgenic mice. Moreover, mammary tumors induced by the neu oncogene, which was introduced by a breeding strategy, showed no differences between mice with or without hP-cadherin. Surprisingly, however, none of the tumors expressed hP-cadherin protein. Together, our studies show no apparent effect on adult mammary gland or tumor behavior by inappropriate expression of P-cadherin in normal mammary epithelial cells.  相似文献   

3.
Expression of human lysozyme mRNA in the mammary gland of transgenic mice   总被引:5,自引:0,他引:5  
Owing to its inherent antimicrobial effect and positive charge, the expression of human lysozyme in bovine milk could be beneficial by altering the overal microbial level and the functional and physical properties of the milk. We have used transgenic mice as model systems to evaluate the expression of human lysozyme containing fusion gene constructs in the mammary gland. Expression of human lysozyme was targeted to the mammary gland by using the 5 promoter elements of either the bovine (line B mice) or s1 (line H mice) casein genes coupled to the cDNA for human lysozyme. Expression of human lysozyme mRNA was not found in mammary tissue from any of line B mice. Tissues were analysed from six lines of H mice and two, H6 and H5, were found to express human lysozyme mRNA in the mammary gland at 42% and 116%, respectively, of the levels of the endogenous mouse whey acidic protein gene. At peak lactation, female mice homozygous for the H5 and H6 transgene have approximately twice the amount of mRNA encoding human lysozyme as hemizygous animals. Expression levels of human lysozyme mRNA in the mammary gland at time points representing late pregnancy, early, peak and late lactation corresponded to the profile of casein gene expression. Human lysozyme mRNA expression was not observed in transgenic males, virgin females or in the kidney, liver, spleen or brain of lactating females. A very low level of expression of human lysozyme mRNA was observed in the salivary gland of line H5.  相似文献   

4.
Combining gene targeting of animal somatic cells with nuclear transfer technique has provided a powerful method to produce transgenic animal mammary gland bioreactor. The objective of this study is to make an efficient and reproducible gene targeting in goat fetal fibroblasts by inserting the exogenous htPAm cDNA into the beta-casein locus with liposomes or electroporation so that htPAm protein might be produced in gene-targeted goat mammary gland. By gene-targeting technique, the exogenous htPAm gene was inserted to milk goat beta-casein gene sequences. Fetal fibroblasts were isolated from Day 35 fetuses of Guanzhong milk goats, and transfected with linear gene-targeting vector pGBC4htPAm using Lipefectamin-2000 and electoporation, respectively. Forty-eight gene-targeted cell colonies with homologous recombination were obtained, and three cell colonies were verified by DNA sequence analysis within the homologous recombination region. Using gene-targeted cell lines as donor cells for nuclear transfer, a total of 600 reconstructed embryos had been obtained, and 146 developed cloned embryos were transferred to 16 recipient goats, and finally three goats showed pregnancy at Day 90.  相似文献   

5.
用PCR法从正常中国人脐带血提取总DNA作为模板,扩增出1.5 kb的人G-CSF基因组基因。序列分析证实其正确性。将其插入小鼠乳清酸蛋白(WAP)基因的起始密码子ATG前的KpnⅠ位点,使其受控于2.6kb的WAP调控序列,构建成乳腺表达载体pWGG。回收经EcoRⅠ酶切后的8.7kb片段用于显微注射。共注射1200枚受精卵,移植34受体母鼠,产仔鼠85只。经PCR检测和DNA印迹分析,证实获得两只整合有人G-CSF基因的雄性鼠,整合率为2.37%。建立的转基因鼠系表明,采用ELASA方法对F1代雌鼠乳汁检测,成功地表达出人G-CSF。表达量为120~250ng/ml。这一结果表明转基因的表达具有乳腺特异性。这为在大动物中实施转基因提供了依据。  相似文献   

6.
The large scale production of recombinant collagen for use in biomaterials requires an efficient expression system capable of processing a large (>400Kd) multisubunit protein requiring post-translational modifications. To investigate whether the mammary gland of transgenic animals fulfills these requirements, transgenic mice were generated containing the S1-casein mammary gland-specific promoter operatively linked to 37Kb of the human 1(I) procollagen structural gene and 3 flanking region. The frequency of transgenic lines established was 12%. High levels of soluble triple helical homotrimeric [(1)3] type I procollagen were detected (up to 8mg/ml) exclusively in the milk of six out of 9 lines of lactating transgenic mice. The transgene-derived human procollagen chains underwent efficient assembly into a triple helical structure. Although proline or lysine hydroxylation has never been described for any milk protein, procollagen was detected with these post-translational modifications. The procollagen was stable in mil; minimal degradation was observed. These results show that the mammary gland is capable of expressing a large procollagen gene construct, efficiently assembling the individual polypeptide chains into a stable triple helix, and secreting the intact molecule into the milk.  相似文献   

7.
Mammary glands undergo functional and metabolic changes during virgin, lactation and dry periods. A total of 122 genes were identified as differentially expressed, including 79 up-regulated and 43 down-regulated genes during lactation compared with virgin and dry periods. Gene ontology analysis showed the functional classification of the up-regulated genes in lactation, including transport, biosynthetic process, signal transduction, catalytic activity, immune system process, cell death, and positive regulation of the developmental process. Microarray data clarified molecular events in bovine mammary gland lactation.  相似文献   

8.
9.
考察了磺酸基离子交换层析介质 (SP Sepharose FF) 在分离表达人乳铁蛋白的重组牛乳过程中的污染机理及其再生策略。通过层析原料及流分中各组分含量的检测分析,发现牛乳中的脂类通过堵塞效应或疏水相互作用残留在层析柱上,造成层析运行压力升高;部分酪蛋白通过静电相互作用占据介质的配基位点,导致介质的交换容量降低;乳糖与介质之间无直接相互作用。连续层析运行次数的增加以及层析-再生时间间隔的延长,均能导致残留组分和介质之间的相互作用逐渐增强,最终影响介质的再生效率。使用NaOH进行及时清洗,可以有效地清除柱上残留的脂类和蛋白,恢复离子交换介质的层析性能和微观形态。  相似文献   

10.
Inefficient processing of human protein C in the mouse mammary gland   总被引:3,自引:0,他引:3  
Vitamin K-dependent plasma protein, human Protein C (HPC) has been expressed in transgenic mice, using a 4.2kb mouse whey acidic protein (WAP) promoter, 9.0 kb HPC gene and 0.4 kb 3flanking sequences. Expression was mammary gland-specific and the recombinant human Protein C (rHPC) was detected in milk at concentrations of 0.1 to 0.7mg ml–1. SDS-PAGE revealed that the single, heavy and light chains of rHPC migrated with increased electrophoretic mobility, as compared to HPC. Enzymatic deglycosylation showed that these molecular weight disparities are in part due to differential glycosylation. The substantial increase observed in the amount of single chain protein, as well as the presence of the propeptide attached to 20–30% of rHPC, suggest that mouse mammary epithelial cells are not capable of efficient proteolytic processing of rHPC. TheK m of purified rHPC for the S-2366 synthetic substrate was similar to that of plasma-derived HPC, while the specific activity was about 42–77%. Amino acid sequence analyses and low anticoagulant activity of purified rHPC suggest that -carboxylation of rHPC is insufficient. These results show that proteolytic processing and -carboxylation can be limiting events in the overexpression of fully biologically active rHPC in the mouse mammary gland.  相似文献   

11.
The synthesis of foreign proteins can be targeted to the mammary gland of transgenic animals, thus permitting commercial purification of otherwise unavailable proteins from milk. Genetic regulatory elements from the mouse whey acidic protein (WAP) gene have been used successfully to direct expression of transgenes to the mammary gland of mice, goats and pigs. To extend the practical usefulness of WAP promoter-driven fusion genes and further characterize WAP expression in heterologous species, we introduced a 6.8 kb DNA fragment containing the genomic form of the mouse WAP gene into sheep zygotes. Two lines of transgenic sheep were produced. The transgene was expressed in mammary tissue of both lines and intact WAP was secreted into milk at concentrations estimated to range from 100 to 500 mg/litre. Ectopic WAP gene expression was found in salivary gland, spleen, liver, lung, heart muscle, kidney and bone marrow of one founder ewe. WAP RNA was not detected in skeletal muscle and intestine. These data suggest that unlike pigs, sheep may possess nuclear factors in a variety of tissues that interact with WAP regulatory sequences. Though the data presented are based on only two lines, these findings suggest WAP regulatory sequences may not be suitable as control elements for transgenes in sheep bioreactors.  相似文献   

12.
13.
14.
15.
16.
Cardiac fatty acid binding protein (cFABP) is abundantly expressed in the nondividing, functionally differentiated mammary ephithelium. It is very closely related, if not identical to, a previously described protein termed mammary derived growth inhibitor (MDGI). In vitro studies suggest that low concentrations of diffusible cFABP/MDGI may play a hormone-like role in limiting proliferative activity and promoting functional differentiation of this tissue, but no in vivo data to support this idea have been published. To test this hypothesis, we compared the levels of cFABP mRNA with both the epithelial DNA labelling index and levels of β-casein mRNA in wild-type mice. We also investigated the effect of a precocious experimental increase of cFABP levels in the mammary gland of transgenic mice on the labelling index and β-casein mRNA levels. This was accomplished by expressing a bovine cFABP cDNA under the control of the ovine β-lactoglobulin (BLG) gene promoter. We found that although both the DNA labelling index, β-casein mRNA levels, and cFABP mRNA levels in wild-type mice are developmentally regulated, they do not correlate with each other during early pregnancy in individual mice. Moreover, a three- to fourfold increase of total cFABP mRNA in two transgenic lines did not affect the DNA labelling index or the levels of β-casein mRNA, an established marker of differentiation of the mammary epithelium, at this developmental stage. These data suggest that epithelial DNA synthesis, β-casein gene expression, and expression of the cFABP gene are regulated independently in the proliferatively active mammary gland and that the rapidly dividing mammary epithelial cells are not susceptible to the action of cFABP during early pregnancy. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Nonlabeled MnCl2 and ZnSO4 compete with59Fe2+-ascorbate and59Fe 2 3+ O3 for transport binding sites situated on the plasma membranes of lactating mouse mammary gland cells. The binding was found to be a process reaching saturation. The heterologous competition used here ruled out the participation of transferrin and to propose that Fe, Mn, and Zn are transported from blood to milk by a mechanism involving one receptor during lactation. Further experiments are necessary to establish the details of the transport mechanism.  相似文献   

18.
Mammary gland specific expression vectors for human clotting factor IX (hFIX) and LacZ reporter gene driven by bovine β-casein gene were constructed. Vectors were packaged by stearylamine (SA) liposome and were transferred to lactating mice via tail vein. Both hFIX and Lac2 gene could be expressed in the mammary gland of the treated mice. The highest production of hFIX protein was 80.28 ng per mL milk, and more than 85% of hFIX protein appeared to be γ-carboxylation and biologically active. The results suggested that the 2.0 kb sequence of β-casein gene including promoter, exon 1 was effective to drive hFIX gene expression in mammary gland and intron 1 of β-casein gene had an effect on the tissue specific expression. The expression level in mouse milk injected with hFIX minigene vector containing hFIX endogenous intron 1 was increased by above 3 times of that injected with hFIX cDNA vector. Project supported by the State High Technology Development Program and Shanghai Science and Technology Commission.  相似文献   

19.
The mammary gland, like most tissues, produces measurable amounts of prostaglandin E2 (PGE2), a metabolite of arachidonic acid produced by sequential actions of two cyclooxygenases (COX-1 and COX-2) and three terminal PGE synthases: microsomal prostaglandin E2 synthase-1 (mPGES1), mPGES2, and cytosolic prostaglandin E2 synthase (cPGES). High PGE2 levels and COX-2 overexpression are frequently detected in mammary tumors and cell lines. However, less is known about PGE2 metabolic enzymes in the context of normal mammary development. Additionally, the primary COX partnerships of terminal PGE synthases and their contribution to normal mammary PGE2 biosynthesis are poorly understood. We demonstrate that expression of COX-1, generally considered constitutive, increases dramatically with lactogenic differentiation of the murine mammary gland. Concordantly, total PGE2 levels increase throughout mammary development, with highest levels measured in lactating tissue and breast milk. In contrast, COX-2 expression is extremely low, with only a modest increase detected during mammary involution. Expression of the G(s)-coupled PGE2 receptors, EP2 and EP4, is also temporally regulated, with highest levels detected at stages of maximal proliferation. PGE2 production is dependent on COX-1, as PGE2 levels are nearly undetectable in COX-1-deficient mammary glands. Interestingly, PGE2 levels are similarly reduced in lactating glands of mPGES1-deficient mice, indicating that PGE2 biosynthesis results from the coordinated activity of COX-1 and mPGES1. We thus provide evidence for the first time of functional coupling between COX-1 and mPGES1 in the murine mammary gland in vivo.  相似文献   

20.
Whey acidic protein (WAP) is the principal whey protein found in rodent milk, which contains a cysteine-rich motif identified in some protease inhibitors and proteins involved in tissue modeling. The expression of the Wap gene, which is principally restricted to the mammary gland, increases more than 1,000-fold around mid-pregnancy. To determine whether the expression of this major milk protein gene is a prerequisite for functional differentiation of mammary epithelial cells, we generated conventional knockout mice lacking two alleles of the Wap gene. Wap-deficient females gave birth to normal litter sizes and, initially, produced enough milk to sustain the offspring. The histological analysis of postpartum mammary glands from knockout dams does not reveal striking phenotypic abnormalities. This suggests that the expression of the Wap gene is not required for alveolar specification and functional differentiation. In addition, we found that Wap is dispensable as a protease inhibitor to maintain the stability of secretory proteins in the milk. Nevertheless, a significant number of litters thrived poorly on Wap-deficient dams, in particular during the second half of lactation. This observation suggests that Wap may be essential for the adequate nourishment of the growing young, which triple in size within the first 10 days of lactation. Important implications of these findings for the use of Wap as a marker for advanced differentiation of mammary epithelial cells and the biology of pluripotent progenitors are discussed in the final section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号