首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the effect of elevated atmospheric carbon dioxide [CO2] (+340 ppm, 13C-depleted) and/or elevated air temperature (2.8–3.5°C) on the rate and δ13C of soil respiration. The study was conducted in a boreal Norway spruce forest using temperature-controlled whole-tree chambers and 13C as a marker for root respiration. The δ13C of needle carbohydrates was followed after the onset of the CO2 treatment in August 2001 and during a 2.5-week period in the summer of 2002. Averaged over the growing seasons of 2002 and 2003, we observed a 48% and 62% increase, respectively, in soil respiration in response to elevated [CO2], but no response to elevated air temperature. The percentage increase in response to elevated [CO2] varied seasonally (between 10% and 190% relative to the control), but the absolute increase varied less (39 ± 11 mg C m−2 h−1; mean ± SD). Data on δ13C of soil respiration indicate that this increase in soil respiration rate resulted from increased root/rhizosphere respiration of recently fixed carbon. Our results support the hypothesis that root/rhizosphere respiration is sensitive to variation in substrate availability.  相似文献   

2.
High rates of deforestation in the Brazilian Amazon have the potential to alter the storage and cycling of carbon (C) and nitrogen (N) across this region. To investigate the impacts of deforestation, we quantified total aboveground biomass (TAGB), aboveground and soil pools of C and N, and soil N availability along a land-use gradient in Rondônia, Brazil, that included standing primary forest, slashed primary and secondary forest, shifting cultivation, and pasture sites. TAGB decreased substantially with increasing land use, ranging from 311 and 399 Mg ha–1 (primary forests) to 63 Mg ha–1 (pasture). Aboveground C and N pools declined in patterns and magnitudes similar to those of TAGB. Unlike aboveground pools, soil C and N concentrations and pools did not show consistent declines in response to land use. Instead, C and N concentrations were strongly related to percent clay content of soils. Concentrations of NO3-N and NH4-N generally increased in soils following slash-and-burn events along the land-use gradient and decreased with increasing land use. Increasing land use resulted in marked declines in NO3-N pools relative to NH4-N pools. Rates of net nitrification and N-mineralization were also generally higher in postfire treatments relative to prefire treatments along the land-use gradient and declined with increasing land use. Results demonstrate the linked responses of aboveground C and N pools and soil N availability to land use in the Brazilian Amazon; steady reductions in aboveground pools along the land-use gradient were accompanied by declines in inorganic soil N pools and transformation rates.  相似文献   

3.
Woody plant expansion, particularly eastern red cedar (Juniperus virginiana L.), has been a major threat to Louisiana calcareous prairies. Previous studies have shown that woody plant expansion into grasslands is associated with an increase in soil heterogeneity. We studied the within site spatial variability and among site differences of surface (0–15 cm depth) soil pH, electrical conductivity (EC), and Mehlich III extractable Ca, Mg, K, Fe and Mn from three remnant prairie-forest associations in Winn Parish, Louisiana. The prairie soil was consistently basic (pH > 7.0) and the forest soil was acidic (pH < 7.0) while the transition soil was neutral (pH = 7.0). A nonparametric statistical test for the equality of medians among sites showed the median values of the soil attributes differed (α = 0.05) except for soil Ca and Fe. The similarity in Ca concentration among sites was attributed to the calcareous parent material common to the three sites. Geostatistical analysis showed that spatial dependence was expressed over a range of 20–30 m for most of the soil attributes considered. Semivariogram shapes were similar among sites, suggesting the greater control of soil parent material on the observed spatial soil pattern. Shorter range of variation emerged only for soil pH when soil data from the forest and transition were deleted, indicating the scaling characteristics of soil pH and its susceptibility to plant induced changes. It is concluded that soil pH can be used as an index to determine prairie-forest boundary, and to access the impact of eastern red cedar on these and similar sites derived from calcareous parent material. Further, results from this study can be used for designing future ecological studies within the prairie by taking the soil spatial variability into account.  相似文献   

4.
The boreal forest plays a key role in the global carbon (C) cycle, and black spruce (Picea mariana (Mill.) BSP) forests are the dominant coniferous forest type in the Canadian boreal forest. National-scale forest C models currently do not account for the contribution of moss-derived organic matter that we hypothesize to be significant in the C budget of black spruce ecosystems. One such model, the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), is designed to meet Canada’s forest-related greenhouse gas reporting requirements. In this study our goal was to determine if black spruce forest soil C stocks are significantly underestimated by the CBM-CFS3, and if so, to determine if estimates could be improved by adding moss-derived C. We conclude that in black spruce sites, organic layer C is significantly underestimated by CBM-CFS3 compared to sites with all other leading tree species analyzed. We compiled and used published moss net primary productivity rates for upland forest systems, with decomposition rates, in mass-balance calculations to estimate mean moss-derived C in black spruce forests for feather mosses at 64 Mg C ha?1, and for sphagnum mosses at 103 Mg C ha?1. These C pools are similar to the CBM-CFS3 mean underestimation of black spruce soil organic layers (63 Mg C ha?1). We conclude that the contribution of mosses is sufficiently large that a moss C pool should be added to national-scale models including the CBM-CFS3, to reduce uncertainties in boreal forest C budget estimation. Feather and sphagnum mosses should be parameterized separately.  相似文献   

5.
6.
Abstract Previously, we discovered the phenomenon of wavelike spatial distributions of bacterial populations and total organic carbon (TOC) along wheat roots. We hypothesized that the principal mechanism underlying this phenomenon is a cycle of growth, death, autolysis, and regrowth of bacteria in response to a moving substrate source (root tip). The aims of this research were (i) to create a simulation model describing wavelike patterns of microbial populations in the rhizosphere, and (ii) to investigate by simulation the conditions leading to these patterns. After transformation of observed spatial data to presumed temporal data based on root growth rates, a simulation model was constructed with the Runge–Kutta integration method to simulate the dynamics of colony-forming bacterial biomass, with growth and death rates depending on substrate content so that the rate curves crossed over at a substrate concentration within the range of substrate availability in the model. This model was named ``BACWAVE,' standing for ``bacterial waves.' Cyclic dynamics of bacteria were generated by the model that were translated into traveling spatial waves along a moving nutrient source. Parameter values were estimated from calculated initial substrate concentrations and observed microbial distributions along wheat roots by an iterative optimization method. The kinetic parameter estimates fell in the range of values reported in the literature. Calculated microbial biomass values produced spatial fluctuations similar to those obtained for experimental biomass data derived from colony forming units. Concentrations of readily utilizable substrate calculated from biomass dynamics did not mimic measured concentrations of TOC, which consist not only of substrate but also various polymers and humic acids. In conclusion, a moving pulse of nutrients resulting in cycles of growth and death of microorganisms can indeed explain the observed phenomenon of moving microbial waves along roots. This is the first report of wavelike dynamics of microorganisms in soil along a root resulting from the interaction of a single organism group with its substrate. Received: 2 October 1999; Accepted: 9 March 2000; Online Publication: 28 August 2000  相似文献   

7.
Induction of assimilatory NO 3 reduction through the application of an easily decomposable substrate in alkaline–saline soils of the former lake Texcoco (Mexico) resulted in a fast immobilization of NO 3 in excess of N required for metabolic activity and the release of large concentrations of NO 2 and smaller amounts of NH 4 + . We postulated that this was regulated by the amounts of NO 3 and glucose added, and affected by the specific characteristics of soil from the former lake Texcoco. This was investigated by spiking soils of different electrolytic conductivity (EC) 56.0 dS m−1 (soil A of Texcoco) and 11.6 dS m−1 (soil B of Texcoco) with different concentrations of NO 3 and glucose while dynamics of CO2, NH 4 + , NO 2 and NO 3 were monitored in an aerobic incubation for 7 days. For comparison reasons (control) an agricultural soil with low EC (0.3 dS m−1) was included as well. In the agricultural soil, 67% of the added glucose mineralized within 7 days, but only 15% in soil A of Texcoco and 20% in soil B of Texcoco. The application of NO 3 to the agricultural soil added with glucose increased cumulative production of CO2 1.2 times, 1.5 times in soil A of Texcoco and 1.8 times in soil B of Texcoco. Concentration of NO 2 increased to > 100 mg NO 2 -N kg−1 when 1000 mg glucose-C kg−1 and 500 mg NO 3 -N kg−1 were added to soil A and B of Texcoco, but remained < 3 mg NO 2 -N kg−1 in the agricultural soil. The ratio between the cumulative production of CO2 and the decrease in concentration of NO 3 was approximately one in soil A and B of Texcoco, but 10 in the agricultural soil after 3 days. It was found that micro-organisms in the alkaline–saline soil of the former lake Texcoco were capable of immobilizing large quantities of NO 3 when an easy decomposable substrate was available in excess of what might be required for metabolic activity while producing large concentrations of NO 2 , but these phenomena were absent in an agricultural soil. In soil of Texcoco, concentrations of NO 2 and NH 4 + increased with increased salinity and availability of NO 3 . This ability to remove large quantities of NO 3 under these conditions and then utilize it at a later time might benefit micro-organisms of the N limited alkaline–saline soils of Texcoco.  相似文献   

8.
Climatic variables, water quality, benthic fluxes, sediment properties, and infauna were measured six times over an annual cycle in a shallow sub-tropical embayment to characterize carbon and nutrient cycling, and elucidate the role of pelagic–benthic coupling. Organic carbon (OC) inputs to the bay are dominated by phytoplankton (mean 74%), followed by catchment inputs (15%), and benthic microalgae (BMA; 9%). The importance of catchment inputs was highly variable and dependent on antecedent rainfall, with significant storage of allochthonous OC in sediments following high flow events and remineralization of this material supporting productivity during the subsequent period. Outputs were dominated by benthic mineralization (mean 59% of total inputs), followed by pelagic mineralization (16%), burial (1%), and assimilation in macrofaunal biomass (2%). The net ecosystem metabolism (NEM = production minus respiration) varied between ?4 and 33% (mean 9%) of total primary production, whereas the productivity/respiration (p/r) ranged between 0.96 and 1.5 (mean 1.13). Up to 100% of the NEM is potentially removed via the demersal detritivore pathway. Dissolved inorganic nitrogen (DIN) inputs from the catchment contributed less than 1% of the total phytoplankton demand, implicating internal DIN recycling (pelagic 23% and benthic 19%) and potentially benthic dissolved organic nitrogen (DON) fluxes (27%) or N fixation (up to 47%) as important processes sustaining productivity. Although phytoplankton dominated OC inputs in this system, BMA exerted strong seasonal controls over benthic DIN fluxes, limiting pelagic productivity when mixing/photic depth approached 1.3. The results of this study suggest low DIN:TOC and net autotrophic NEM may be a significant feature of shallow sub-tropical systems where the mixing/photic depth is consistently less than 4.  相似文献   

9.
To date, most research that has examined the effect of elevated atmospheric carbon dioxide concentration ([CO2]) on litter decomposition has focused on changes in the leaf litter quality of individual species. Results from California grasslands indicate that other CO2 responses may have greater consequences for decomposition rates. For instance, CO2-driven changes in either species dominance or patterns of biomass allocation would alter both the quality and the position of grassland litter. We review the results from studies in California grasslands to identify the mechanisms that affect grassland litter decomposition. We use a simple calculation that integrates the results of two studies to identify three mechanisms that have the potential to substantially alter decomposition rates as the atmospheric [CO2] rises. Received 16 January 2001; accepted 26 September 2001.  相似文献   

10.
Carbon (C) and nitrogen (N) interact to coordinate their metabolism in achieving C:N homeostasis in all cellular organisms. Plant shoots and roots take up C and N, respectively, and the coordinated C and N assimilation is essential for normal plant growth and development. In this study, rice was used as a model system for the investigation of molecular mechanisms underlying C–N interactions and coordination in cereal species. We investigated the growth response of rice seedlings to a wide range of exogenous C:N availabilities and established balanced exogenous C:N that was optimal for rice seedling growth. To assess correlations between the modulation of plant growth and the regulation of metabolic gene expression by C:N availabilities, we examined the expression of PEPC, PK, NR, GS, and GOGAT in rice seedlings treated with four C:N availabilities: low C/low N, low C/high N, high C/low N, and high C/high N. It was found that their expression was subjected to complex regulation by C:N availabilities. Our results demonstrate that growth of shoot and root rice seedlings is regulated by C–N interaction and growth modulations are associated with changes in metabolic gene expression. Our findings suggest that rice is a useful model system for the investigation of regulation mechanisms responsible for C–N interaction and coordination in plants.  相似文献   

11.
Soil microorganisms mediate many critical ecosystem processes. Little is known, however, about the factors that determine soil microbial community composition, and whether microbial community composition influences process rates. Here, we investigated whether aboveground plant diversity affects soil microbial community composition, and whether differences in microbial communities in turn affect ecosystem process rates. Using an experimental system at La Selva Biological Station, Costa Rica, we found that plant diversity (plots contained 1, 3, 5, or > 25 plant species) had a significant effect on microbial community composition (as determined by phospholipid fatty acid analysis). The different microbial communities had significantly different respiration responses to 24 labile carbon compounds. We then tested whether these differences in microbial composition and catabolic capabilities were indicative of the ability of distinct microbial communities to decompose different types of litter in a fully factorial laboratory litter transplant experiment. Both microbial biomass and microbial community composition appeared to play a role in litter decomposition rates. Our work suggests, however, that the more important mechanism through which changes in plant diversity affect soil microbial communities and their carbon cycling activities may be through alterations in their abundance rather than their community composition.  相似文献   

12.
Forest regrowth after cropland abandonment and urban sprawl are two counteracting processes that have influenced carbon (C) sequestration in the southeastern United States in recent decades. In this study, we examined patterns of land-use/land-cover change and their effect on ecosystem C storage in three west Georgia counties (Muscogee, Harris, and Meriwether) that form a rural–urban gradient. Using time series Landsat imagery data including MSS for 1974, TM for 1983 and 1991, and ETM for 2002, we estimate that from 1974 to 2002, urban land use in the area has increased more than 380% (that is, 184 km2). Most newly urbanized land (63%) has been converted from forestland. Conversely, cropland and pasture area has decreased by over 59% (that is, 380 km2). Most of the cropland area was converted to forest. As a result, the net change in forest area was small over the past 29 years. Based on Landsat imagery and agricultural census records, we reconstructed an annual gridded data set of land-cover change for the three counties for the period 1850 to 2002. These data sets were then used as input to the Terrestrial Ecosystem Model (TEM) to simulate land-use effects on C fluxes and storage for the study area. Simulated results suggest that C uptake by forest regrowth (approximately 23.0 g C m−2 y−1) was slightly greater than the amount of C released due to deforestation (approximately 18.4 g C m−2 y−1), thus making the three counties a weak C sink. However, the relative importance of different deforestation processes in this area changed significantly through time. Although agricultural deforestation was generally the most important C-release process, the amount of C release attributable to urbanization has increased over time. Since 1990, urbanization has accounted for 29% of total C loss from the study area. We conclude that balancing urban development and forest protection is critically important for C management and policy making in the southeastern United States.  相似文献   

13.
Rivers link oceans with the land, creating global hot spots of carbon processing in coastal seas. Coastlines around the world are dominated by sandy beaches, but beaches are unusual in that they are thought to rely almost exclusively on marine imports for food. No significant connections to terrestrial production having been demonstrated. By contrast, we isotopically traced carbon and nitrogen pathways leading to clams (Donax deltoides) on beaches. Clams from areas influenced by river plumes had significantly different isotope signatures (δ13C: −18.5 to −20.2‰; δ15N: 8.3–10.0‰) compared with clams remote from plumes (δ13C: −17.5 to −19.5‰; δ15N: 7.6–8.7‰), showing that terrestrial carbon and sewage, both delivered in river plumes, penetrate beach food webs. This is a novel mechanism of trophic subsidy in marine intertidal systems, linking the world’s largest shore ecosystem to continental watersheds. The same clams also carry pollution signatures of sewage discharged into rivers, demonstrating that coastal rivers connect ecosystems in unexpected ways and transfer contaminants across the land–ocean boundary. The links we demonstrate between terrigenous matter and the largest of all marine intertidal ecosystems are significant given the immense social, cultural, and economic values of beaches to humans and the predicted consequences of altered river discharge to coastal seas caused by global climate change.  相似文献   

14.
The current study tested the assumption that floristic and functional diversity patterns are negatively related to soil nitrogen content. We analyzed 20 plots with soil N-contents ranging from 0.63% to 1.06% in a deciduous forest near Munich (Germany). To describe species adaptation strategies to different nitrogen availabilities, we used a plant functional type (PFT) approach. Each identified PFT represents one realized adaptation strategy to the current environment. These were correlated, next to plant species richness and evenness, to soil nitrogen contents. We found that N-efficient species were typical for low soil nitrogen contents, while N-requiring species occur at high N-contents. In contrast to our initial hypotheses, floristic and functional diversity measures (number of PFTs) were positively related to nitrogen content in the soil. Every functional group has its own adaptation to the prevailing environmental conditions; in consequence, these functional groups can co-exist but do not out-compete one another. The increased number of functional groups at high N-contents leads to increased species richness. Hence, for explaining diversity patterns we need to consider species groups representing different adaptations to the current environmental conditions. Such co-existing ecological strategies may even overcome the importance of competition in their effect on biodiversity.  相似文献   

15.
Russian Journal of Plant Physiology - The effect of an elevated concentration of СО2 (800 ppm) on the growth rate, efficiency of photosystem I (PS I) and photosystem II (PS II), content...  相似文献   

16.
This paper presents my personal account of research on CO(2) fixation from when I began these studies as a postdoctoral student in the early 1970s. It traces interests in microbial ribulose bisphosphate carboxylase/oxygenase (Rubisco) and considers early breakthroughs on the isolation, characterization, and significance of this enzyme from nonsulfur purple photosynthetic bacteria and other phototrophic organisms. This article also develops a historical perspective as to how recent efforts may lead to an understanding of molecular mechanisms by which the synthesis of this enzyme and other proteins of the pathway are regulated at the molecular level. In addition, how these studies impinge on the interactive control of CO(2) fixation, along with nitrogen fixation and hydrogen metabolism, is also considered. Finally, CO(2)-fixation studies in green sulfur photosynthetic bacteria and the discovery of the rather surprising Rubisco-like protein are described.  相似文献   

17.
Previous binding studies of antibodies that recognized a partially or fully hidden epitope suggest that insect cell-derived dengue virus undergoes structural changes at an elevated temperature. This was confirmed by our cryo-electron microscopy images of dengue virus incubated at 37°C, where viruses change their surface from smooth to rough. Here we present the cryo-electron microscopy structures of dengue virus at 37°C. Image analysis showed four classes of particles. The three-dimensional (3D) map of one of these classes, representing half of the imaged virus population, shows that the E protein shell has expanded and there is a hole at the 3-fold vertices. Fitting E protein structures into the map suggests that all of the interdimeric and some intradimeric E protein interactions are weakened. The accessibility of some previously found cryptic epitopes on this class of particles is discussed.  相似文献   

18.
Ungulate carcasses can have important effects on the surrounding soil and vegetation. The impact of six carcasses of European bison (Bison bonasus) was investigated for the first time in a natural temperate forest (Białowieża, Poland) by measuring soil and plant nutrient concentrations along a gradient extending from the centre of each carcass. Calcium concentration and pH were found to be higher at the centre of the carcass, decreasing towards the periphery. This effect lasted up to 7 years after the death of the animal. The concentration of most nutrients in the soil and plants varied irregularly, suggesting an effect of the carcass at its centre but the absence of a clear pattern of variation along the gradient. Concentrations of NO3 in the soil differed only at the 1-year old carcass, suggesting a fast turnover of nitrate in temperate forests. Our results show that the effects of large herbivore carcasses on soil and plant nutrient concentrations are not easily detectable in a temperate forest as in more homogeneous habitats, such as tundra and prairie. This may be due to the high activity of scavengers and nutrient recycling in the study area, but it may also be a consequence of a more complex and patchy interaction between nutrient availability and other limiting factors in temperate forests.  相似文献   

19.
Previous studies of the effects of growth at elevated CO2 on energy partitioning in the photosynthetic apparatus have produced conflicting results. The hypothesis was developed and tested that elevated CO2 increases photochemical energy use when there is a high demand for assimilates and decreases usage when demand is low. Modulated chlorophyll a fluorescence and leaf gas exchange were measured on needles at the top of a mature, 12-m loblolly pine (Pinus taeda L.) forest. Trees were exposed to ambient CO2 or ambient plus 20 Pa CO2 using free-air CO2 enrichment. During April and August, periods of shoot growth, light-saturated photosynthesis and linear electron transport were increased by elevated CO2. In November, when growth had ceased but temperatures were still moderate, CO2 treatment had no significant effect on linear electron transport. In February, when low temperatures were likely to inhibit translocation, CO2 treatment caused a significant decrease in linear electron transport. This coincided with a slower recovery of the maximum photosystem II efficiency on transfer of needles to the shade, indicating that growth in elevated CO2 induced a more persistent photoinhibition. Both the summer increase and the winter decrease in linear electron transport in elevated CO2 resulted from a change in photochemical quenching, not in the efficiency of energy transfer within the photosystem II antenna. There was no evidence of any effect of CO2 on photochemical energy sinks other than carbon metabolism. Our results suggest that elevated CO2 may increase the effects of winter stress on evergreen foliage.  相似文献   

20.
Recombinant Semliki Forest virus (rSFV) enables high-level, transient expression of heterologous proteins in vivo, and is believed to be a superior vector for genetic vaccination, compared with the conventional DNA plasmid. Nonetheless, the efficacy of rSFV-based vaccine in eliciting human immune responses has not been tested. We used a Trimera mouse model, consisting of lethally irradiated BALB/c host reconstituted with nonobese diabetes/severe combined immunodeficiency (NOD/SCID) bone marrow plus human peripheral blood mononuclear cells (PBMCs), to characterize the in vivo immune responses against rSFV-encoded human melanoma antigen MAGE-3. MAGE-3–specific antibody and cytotoxic T lymphocyte (CTL) activity were detected by ELISA and 51Cr-release assay, respectively, and the responses were compared with those induced by a plasmid DNA vaccine encoding the same antigen. The results showed that rSFV vaccine could elicit human MAGE-3–specific antibody and CTL response in the Trimera mice, and the antitumor responses were more potent than those by plasmid DNA vaccination. This is the first report to evaluate human immune responses to an rSFV-based tumor vaccine in the Trimera mouse model. Our data suggest that rSFV vector is better than DNA plasmid in inducing protective immunity, and the Trimera model may serve as a general tool to evaluate the efficacy of tumor vaccines in eliciting human primary immune response in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号