首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that the DNA polymerase alpha activity/unit cellular protein is decreased in late-passage (senescent) human diploid fibroblast-like (HDFL) cultures due to the cellular enlargement associated with in vitro aging. In the studies described here, we have used cell fusion technology to investigate the formal kinetic relationship between the concentration of DNA polymerase alpha and the rate of reinitiation of DNA synthesis in nuclei from senescent cells. Heterokaryons were derived from the fusion of senescent cells to a series of actively dividing cell types with inherently different DNA polymerase alpha activities per cell. A kinetic analysis revealed a first-order relationship between the entry into S phase of senescent nuclei and the concentration of DNA polymerase alpha activity calculated to be in heterokaryons. This result suggests that increases in cell volume may be related to the decline in proliferative activity of late-passage HDFL cells, via "dilution" of factors essential for cellular replication.  相似文献   

2.
It has previously been shown that serum-deprived, early passage quiescent human diploid fibroblastlike (HDFL) cells are able to inhibit cycling cells from entry into DNA synthesis upon cell fusion. We have found that the degree of inhibition of DNA synthesis in the heterokaryon correlates with the duration of serum deprivation, which is consistent with the suggestion that serum-deprived cells may enter progressively deeper stages of G0 as they increase their time in quiescence. In contrast to fusions with senescent cells, in heterokaryons between serum-deprived early passage and cycling young cells transient inhibition of protein synthesis with cycloheximide or inhibition of RNA synthesis with 5–6-dichloro-1-β-D-ribofuranosyl benzimidazole (DRB) did not stimulate nuclear [3H]-thymidine incorporation. These results suggest that differences may exist in the mechanisms responsible for inhibiting cell cycle progression in senescent vs early passage quiescent HDFL cells.  相似文献   

3.
We have examined the kinetic relationship between the rate of entry into the S phase in human diploid fibroblast-like (HDFL) monokaryon cells and (1) the concentration of DNA polymerase alpha activity and (2) the cell volume. In the former studies, a first-order dependence between the rate of entry into the S phase and the concentration of DNA polymerase alpha activity was observed, consistent with the enzyme, or a coregulated factor, being rate limiting for this metabolic process. Examination of the nature of the dependence of the rate of entry into the S phase upon cell volume revealed a more complex relationship. The results obtained in studies with synchronized cultures are consistent with the presence of two to three rate-limiting reactants when cell volume is the independent variable. Studies with asynchronous HDFL cell cultures revealed that the smallest cells in the G1 population, presumably the early G1 cells, enter the S phase at an increasing rate as a function of cell volume up to a certain size, beyond which the cells enter at a decreasing rate similar to that observed in the studies with the synchronized cultures. Similar studies examining the relationship between cell volume and the rate of entry into S phase in three established immortal cell lines revealed positive correlation between the rate of entry into S phase and cell volume throughout the size range of the G1 population. This latter observation suggests that the factors involved in the initiation of the S phase may be present in concentrations that are not rate limiting in immortal cell lines.  相似文献   

4.
DNA polymerase α activity was determined following serum stimulation of early and late passages of human diploid fibroblast-like (HDFL) cultures derived from apparently normal donors (two strains) and from a patient with Werner's syndrome (one strain). Induction of this enzyme was observed in both low passage, actively proliferating cultures and in postmitotic “senescent” cultures from all three strains. The maximal polymerase activity of early and late passage cells of each strain were nearly identical when normalized to the number of cells present. However, the activity of the enzyme was observed to be significantly lower in late passage cultures when normalized to total protein content apparently because of enlargement of the senescent cells. The behavior of Werner derived cells was similar to that of the normal cells. The induction of DNA polymerase α in senescent cultures indicates that they retain the capacity to carry out some complex metabolic responses to mitogen stimulation. In addition, these results suggest the possibility that dilution of DNA polymerase α and/or other DNA replication factors may play a role in the onset or maintenance of the postmitotic state in the enlarged senescent HDFL cells.  相似文献   

5.
A cDNA encoding a full-length rat 5α-reductase was isolated using female rat liver mRNA and the polymerase chain reaction, and fused to the Escherichia coli trp E gene in a pATH expression vector. The trp E-5α-reductase fusion protein expressed in bacteria and a synthetic oligopeptide corresponding to the C-terminus of rat 5α-reductase were used as antigens to produce rabbit polyclonal antibodies to 5α-reductase. Antibodies to the 5α-reductase portion of the fusion protein and to the peptide were purified by affinity chromatography. Antibodies against the 5α-reductase fusion protein reacted with a single component of rat liver microsomes with Mr 26,000 on Western blots, consistent with the size of 5α-reductase predicted from its cDNA, and with a Mr 23,000 component on Western blots of detergent extracts of rat ventral prostate nuclei; other rat ventral prostate cellular fractions (mitochondrial, microsomal, cytosol) bound little or no antibody. Antibody against the synthetic peptide reacted with a Mr 26,000 component of rat liver microsomes as well as with several components in various cellular fractions of rat ventral prostate. With anti-5α-reductase fusion protein antibodies, specific immunocytochemical staining was observed in the epithelial cell nuclei of the rat ventral prostate, seminal vesicle, epididymis and other accessory sex glands. This nuclear staining was specific, since antibodies from non-immunized rabbits did not give nuclear staining and preincubation of the anti-5α-reductase fusion protein antibodies with the trp E-5α-reductase fusion protein eliminated nuclear staining. Incubation of antibodies with trp E (without the 5α-reductase fusion) had no effect on nuclear staining. Specific staining was not detected in the cytoplasm of these epithelial cells. Little or no specific staining was observed in stromal cells in these rat tissuess. Human prostate was also immunocytochemically stained with this antibody. Specific staining was found in both epithelial and stromal cell nuclei.  相似文献   

6.
We previously demonstrated an inverse relationship between the G1 volume of human diploid fibroblast-like (HDFL) cells obtained from foreskin tissue and clonal replicative potential. On the basis of these results, we suggested that one process underlying in vitro senescence is a progressive increase in the mean cell volume of successive progeny within clonal lineages. We now report that the size of HDFL cells, as well as of chick embryo fibroblasts, can be increased in the virtual absence of cell division by culturing at low density and at low serum concentration (0.1-1.0%). Consequent to an increase in cell size, the replicative potential of the cells is reduced to the level of later-passage cells of similar size. By clonal analysis, the populations of enlarged cells contain up to three times as many nondividing cells as do controls. In the enlarged populations, the proportion of cells producing attenuated clones (four or fewer progeny) increases by about 30%, whereas the proportion of cells yielding >32 cells declines by a similar percentage. These observations lead us to propose that replicative potential may be limited by cell size, which in turn may be regulated by a kinetic relationship between cellular growth and cell division cycles.  相似文献   

7.
Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen–transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.  相似文献   

8.
Previously, we reported that fibronectin (FN) mRNA was overexpressed in normal late-passage (old) and prematurely senescent Werner syndrome (WS) fibroblasts when compared to normal early-passage (young) cells (Muranoet al. Mol. Cell. Biol.11, 3905–3914, 1991). Therefore, we investigated the expression and function of the α5β1 FN receptor (FNR), a member of the integrin family, in young and senescent normal and WS cells. Levels of the α5 polypeptide, a unique subunit of the α5β1 FNR, were reduced in old cells, so that old cells produced fewer α5β1 heterodimers on the plasma membrane. The reduced levels of α5 polypeptide might be due to deficient translation and/or nonfunctional α5 mRNA since increased mRNA levels and unchanged polypeptide turnover were found in these cells. Moreover, the α5 polypeptides on the senescent cell surface were less accessible to monoclonal antibody, suggesting sequestration of this subunit, which might affect receptor–ligand binding. In contrast, β1 subunit, a common subunit for the β1 integrin subfamily, showed relatively stable levels during cellular aging, but underwent slower intracellular processing. Old cells exhibited reduced attachment to FN, which might be in part mediated by the α5β1 FNR. More importantly, old cells were deficient in response to FN-induced DNA synthesis and cell proliferation. This induction was pronounced in young cells, however, and could be completely inhibited by α5-specific monoclonal antibody, indicating mediation by α5β1 FNR. WS cells behaved like normal old cells in the above assays. Our results indicate that reduction of α5β1 FNR expression and its mediated effects are associated with the senescent phenotype of fibroblasts. These findings provide new insight into the mechanism(s) of replicative senescence in human fibroblasts.  相似文献   

9.
We have investigated the capacity of a murine cell line with a temperature-sensitive (ts) mutation in the DNA polymerase α (Pola) locus and a series of ts non-Pola mutant cell lines from separate complementation groups to stimulate DNA synthesis, in senescent fibroblast nuclei in heterokaryons. In the Pola mutant × senescent heterodikaryons, both human and murine nuclei display significantly diminished levels of DNA synthesis at the restrictive temperature (39.5°C) as determined by [3H]thymidine labeling in autoradiographs. In contrast, all of the non-Pola mutants, as well as the parental (wild-type) murine cells, induced similar levels of DNA synthesis in both parental nuclei at the nonpermissive and permissive temperatures. Similarly, young human fibroblasts are also able to initiate DNA synthesis in heterokaryons with the ts Pola mutant at the two temperatures. In order to determine if complementation of the non-Pola mutants requires induction of serum responsive factors in the senescent cells, fusion studies of similar design were conducted with young and old human fibroblasts incubated in low serum (0.2%) for 48 hr prior to and after cell fusion. Again, a diminished level of DNA synthesis was observed at 39.5°C in the Pola mutant x senescent cell heterokaryons. In these low-serum studies, both parental nuclei in the Pola x young cell heterokaryons and the human nuclei in heterokaryons with one of the non-Pola mutants (FT107) also displayed diminished levels of DNA synthetic activity. All of the other mutants are able to support similar levels of synthetic activity at both temperatures in the presence of reduced serum. The nature of the mutation in three of the non-Pola lines has not been determined but, like the Pola mutant cells, are inhibited in the G1 phase of the cell cycle when incubated at the nonpermissive temperature (39.5°C). The fourth non-Pola mutant line is known to have at least one ts mutation in the cdc2 gene and is inhibited in the G2 phase when exposed to 39.5°C. These results suggest that there may be a functional deficiency of pol α in senescent human fibroblasts, and this replication factor may be one of the rate-limiting factors involved in loss of the capacity to initiate DNA synthesis in senescent cells. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Incorporation of [3H]thymidine was observed in both parental nuclei in heterokaryons resulting from the fusion of post-mitotic, "senescent" human diploid cells and a thymidine kinase-deficient murine cell line (3T3der-4E). The senescent nuclei displayed a sudden increase of activity approximately 4--6 hours after fusion. A moderate increase of thymidine incorporation was observed in 3T3der-4E cells cocultivated with but not fused to senescent cells, consistent with metabolic cooperation. Chromosome preparations of cultures fixed approximately 24 hr after fusion revealed the presence of hybrid metaphase cells containing almost the entire human complement. All of the identifiable human chromosomes were bi-armed, suggesting that the senescent nuclei were stimulated to reinitiate replicative DNA synthesis rather than repair synthesis in these heterokaryons.  相似文献   

11.
DNA single-strand breaks containing 3′-8-oxoguanine (3′-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3′-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3′-8-oxoG inhibits ligation by DNA ligase IIIα or DNA ligase I, inhibits extension by DNA polymerase β and that the lesion is resistant to excision by DNA glycosylases involved in the repair of oxidative lesions in human cells. However, we find that purified human AP-endonuclease 1 (APE1) is able to remove 3′-8-oxoG lesions. By fractionation of human whole cell extracts and immunoprecipitation of fractions containing 3′-8-oxoG excision activity, we further demonstrate that APE1 is the major activity involved in the repair of 3′-8-oxoG lesions in human cells and finally we reconstituted repair of the 3′-8-oxoG-containing oligonucleotide duplex with purified human enzymes including APE1, DNA polymerase β and DNA ligase IIIα.  相似文献   

12.
13.
14.
Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly γ-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression.  相似文献   

15.
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

16.
Cytoplasmic extracts from early-passage (young), late-passage (senescent) normal human fibroblast (HF) cultures and immortalized human cell lines (HeLa, HT-1080, and MANCA) were analyzed for their ability to support semiconservative DNA synthesis in an in vitro SV40-ori DNA replication system. Unsupplemented extracts from the three permanent cell lines were demonstrated to be active in this system; whereas young HF extracts were observed to be minimally active, and no activity could be detected in the senescent HF extracts. The activity of these extracts was compared after supplementation with three recombinant human replication factors: (1) the catalytic subunit of DNA polymerase alpha (DNA pol-alpha-cat), (2) the three subunits of replication protein A (RPA), and (3) DNA topoisomerase I (Topo I). The addition of all three recombinant proteins is required for optimum activity in the young and senescent HF extracts; the order of the level of activity is: transformed > young HF > senescent HF. Young HF extracts supplemented with RPA alone are able to support significant replicative activity but not senescent extracts which require both RPA and DNA pol-alpha-cat for any detectable activity. The necessary requirement for these factors is confirmed by the failure of unsupplemented young and senescent extracts to activate MANCA extracts that have been immunodepleted of DNA pol-alpha-cat or RPA. Immunocytochemical studies revealed that RPA, DNA pol-alpha, PCNA, and topo I levels are higher in the immortal cell types used in these studies. In the HF cells, levels of DNA pol-alpha-cat and PCNA are higher (per mg protein) in the low-passage than in the senescent cells. By contrast, RPA levels, as determined by immunocytochemical or Western blot studies, were observed to be similar in both young and senescent cell nuclei. Taken together, these results indicate that the low to undetectable activity of young HF extracts in this system is due mainly to reduced intracellular levels of RPA, while the senescent HF extracts are relatively deficient in DNA polymerase alpha and probably some other essential replication factors, as well as RPA. Moreover, the retention of RPA in the senescent HF nuclei contributes to the low level of this factor in the cytoplasmic extracts from these cells.  相似文献   

17.
Nuclear membrane permeabilization is required for replication of quiescent (G0) cell nuclei inXenopusegg extract. We now demonstrate that establishment of replication competence in G0 nuclei is dependent upon a positive activity present in the soluble egg extract. Our hypothesis is that G0 nuclei lose the license to replicate following growth arrest and that this positive activity is required for relicensing DNA for replication. To determine if G0 nuclei contain licensed DNA, we used the protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), to prepare egg extracts that are devoid of licensing activity. Intact nuclei, isolated from mammalian cells synchronized in G1-phase (licensed), G2-phase (unlicensed), and G0 were permeabilized and assayed for replication in 6-DMAP-treated and untreated extracts supplemented with [α-32P]dATP or biotinylated-dUTP. Very little radioactivity was incorporated into nascent DNA in each nuclear population; however, nearly all nuclei in each population incorporated biotin in 6-DMAP extract. The pattern of biotin incorporation within these nuclei was strikingly similar to the punctate pattern observed within nuclei incubated in aphidicolin-treated extract, suggesting that initiation events occur within most replication factories in 6-DMAP extract. However, density substitution and alkaline gel analyses indicate that the incorporated biotin within these nuclei arises from a small number of active origins which escape 6-DMAP inhibition. We conclude that 6-DMAP-treated egg extract cannot differentiate licensed from unlicensed mammalian somatic cell nuclei and, therefore, cannot be used to determine the “licensed state” of G0 nuclei using the assays described here.  相似文献   

18.
The activity of DNA polymerase alpha and beta was assayed in heated HeLa S3 cells as well as in nuclei isolated from these cells. The enzyme activity as measured in cells and in nuclei has been compared with the extent of cell survival after the different hyperthermic doses. It was found that although the activity of the cellular DNA polymerases was related to cell survival after single heat doses, no correlation was found when thermotolerant cells were heated. When the activity of the DNA polymerases was determined in nuclei isolated from non-heated and heated cells, more polymerase activity was found in the nuclei of the heated cells. However, the heat sensitivity of DNA polymerase activity was the same for nuclei isolated from control, pre-heated and thermotolerant cells. Heat protection of polymerase activity by erythritol and sensitization by procaine was found when cells, but not when nuclei, were heated in the presence of these modifiers. It is concluded that (the nuclear bound) DNA polymerases are not to be considered as key enzymes in cellular heat sensitivity of HeLa S3 cells.  相似文献   

19.
Subnuclear localization of DNA polymerase α was studied in sea urchin embryos. Blastula nuclei treated with EDTA and potassium phosphate released subnuclear components bearing most of the nuclear DNA polymerase α. These components were suggested to be a part of nuclear membrane based on their buoyant densities (1.177 and 1.136 g/cm3) in isopyknic centrifugation and the nuclear pore-like structure. Contamination with DNA and endoplasmic reticulum membrane to the subnuclear components was shown to be negligible. These results suggested that DNA polymerase α associates with nuclear membrane of sea urchin embryos. Nuclear membrane deprived of DNA polymerase α was able to associate with nuclear DNA polymerase α from blastulae and the cytoplasmic enzyme of unfertilized eggs efficiently, but not with the cytoplasmic enzyme of gastrulae. This result suggests that the nuclear membrane is originates from the endoplasmic reticulum with which DNA polymerase α associates in unfertilized eggs.  相似文献   

20.
DNA polymerase β (Pol β) is a key enzyme in DNA base excision repair, and an important factor for maintaining genome integrity and stability. More than 30% of human tumors characterized to date express DNA Pol β variants, many of which result from a single nucleotide residue substitution. However, in most cases, their precise functional deficiency and relationship to cancer susceptibility are still unknown. In the current work, we show that a polymorphism encoding an arginine to glutamine substitution, R137Q, has lower polymerase activity. The substitution also affects the interaction between Pol β and proliferating cell nuclear antigen (PCNA). These defects impair the DNA repair capacity of Pol β in reconstitution assays, as well as in cellular extracts. Expression of wild-type Pol β in pol β−/− mouse embryonic fibroblast (MEF) cells restored cellular resistance to DNA damaging reagents such as methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (MNU), while expression of R137Q in pol β−/− MEF cells failed to do so. These data indicate that polymorphisms in base excision repair genes may contribute to the onset and development of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号