首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the past two decades, the knowledge of the molecular mechanism by which estrogens exert various functions in different tissues and organs has evolved rapidly. Recent reports demonstrated that estrogen could decrease the cell growth in several types of cancer cells, including ovarian cancer cells. Though experiments explored the possible mechanism of the inhibitory effect, the exact mechanism is responsible for the effect, which remains unclear. The ovary is the main source of the estrogen, estrogen receptor is expressed in several ovarian cell types, including ovarian surface epithelium, the tissue of origin of approximately 90% of the ovarian cancers. It was of great interest to analyze the effects of 17β-estradiol (E2) on apoptosis of ovarian cancer cells, and the identification of E2-regulated specific genes involved in epithelial proliferation apoptosis, thus may be a clue for understanding the progression of ovarian cancer and for the design of new target therapies. To elucidate the mechanism involved, effects of pharmacological concentrations of estrogen were studied in human ovarian cancer cell line 3AO cells. Inhibition of cellular growth of 3AO cells was seen with E2 at concentrations higher than 0.1 μmol/L. The estrogen receptor inhibitor ICI 182780 cannot block the inhibitory effect of E2. It was surprising to find that ICI 182780 itself can inhibit the growth of 3AO cells, and had a collaborative effect with E2. The decreased cell growth induced by E2 was shown to be apoptosis as analyzed by flow cytometry. ERβ was detected in the 3AO ovarian cancer cell line but not ERα. The expression of ERβ was weak, which may partially explain why high but not low dose of E2 needed to induce the apoptosis of 3AO cells. We also observed that membrane impermeable E2, E2-BSA have lost growth inhibitory on 3AO cells, which excluded the membrane effect of E2 as previously reported by many investigators. The p38 kinase inhibitor, SB203580 were partially protected 3AO cells against growth inhibition by E2, while inhibitor of JNK, SP600125 enhanced cell death induced by E2. These results showed that MAPK is implicated in cellular processes involving apoptosis.  相似文献   

2.
药物治疗浓度的雌激素对卵巢癌3AO细胞生长的影响   总被引:1,自引:0,他引:1  
在过去的20年里,人们对于雌激素在不同组织、器官中发挥不同功能的分子机制进行了深入的研究,并取得了非常快的进展。最近的研究表明,雌激素能够抑制包括卵巢癌在内的多种肿瘤细胞的生长。卵巢是女性雌激素的主要来源,多种卵巢细胞表达雌激素受体,其中包括90%以上的卵巢癌起源的卵巢表面上皮细胞。雌激素诱导卵巢癌细胞凋亡的研究非常有实验及临床价值,雌激素调控的凋亡相关的特异性基因的发现对于揭示卵巢癌的发生发展以及针对卵巢癌特异性治疗的研究将会提供巨大的帮助。以人卵巢癌3AO细胞为模型,探讨了药物治疗浓度的雌激素对卵巢癌细胞的凋亡诱导作用以及其可能机制。首先用MTT检测方法观察了雌二醇及其受体拮抗剂ICI 182780对3AO细胞生长的影响。研究发现,高于0.1pmol/L浓度的雌二醇能够抑制3AO细胞的生长,其中5pmol/L浓度的雌二醇处理3AO细胞72h后,对3AO细胞的抑制率达到70%。雌激素受体的拮抗剂ICI 182780不但不能阻断雌激素的效应,它本身也能抑制3AO细胞的生长,并且与雌激素有协同效应,并且经流式细胞术证实雌激素及其受体拮抗剂引起的3AO细胞的死亡为凋亡。雌激素对生长的调控是细胞类型特异性的,其机制可能与细胞内雌激素受体不同亚型的表达有关。细胞内雌激素受体β亚型的表达利于细胞凋亡的发生,细胞内雌激素受体α亚型的表达则会保护细胞免于凋亡的发生。在对雌激素诱导的凋亡发生机制的探讨过程中,我们发现3AO细胞只表达雌激素受体β亚型,而不表达雌激素受体α亚型,并且与α亚型相比,β亚型的表达明显降低,这可以解释为何需要高浓度的雌激素才能够诱导3AO细胞凋亡。我们又观察了大分子BSA标记的雌激素对3AO细胞生长的影响,结果发现这种不能通过细胞膜的雌激素失去了对3AO细胞生长的抑制作用,从而排除了雌激素的膜效应。近来的研究表明,MAPK信号通路在调控细胞的生长过程中发挥了重要的作用,并且参与了雌激素调控细胞生长的过程。接下来我们观察了MAPK信号通路在雌激素诱导3AO细胞生长中的作用。研究发现,p38/MAPK激酶的抑制剂SB203580部分的阻断了雌激素的生长抑制效应,而JNK/MAPK激酶的抑制剂SP600125则能促进雌激素的效应,提示MAPK信号通路参与了雌激素的这种效应。  相似文献   

3.
The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI), is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu(+)/−/CDCP1+ breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell–substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu+, but not HER-2/neu(+)/− cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect.  相似文献   

4.
5.
6.
Zheng S  Huang J  Zhou K  Zhang C  Xiang Q  Tan Z  Wang T  Fu X 《PloS one》2011,6(7):e22439
Estrogen promotes breast cancer metastasis. However, the detailed mechanism remains largely unknown. The actin binding protein ezrin is a key component in tumor metastasis and its over-expression is positively correlated to the poor outcome of breast cancer. In this study, we investigate the effects of 17β-estradiol (E2) on the activation of ezrin and its role in estrogen-dependent breast cancer cell movement. In T47-D breast cancer cells, E2 rapidly enhances ezrin phosphorylation at Thr(567) in a time- and concentration-dependent manner. The signalling cascade implicated in this action involves estrogen receptor (ER) interaction with the non-receptor tyrosine kinase c-Src, which activates the phosphatidylinositol-3 kinase/Akt pathway and the small GTPase RhoA/Rho-associated kinase (ROCK-2) complex. E2 enhances the horizontal cell migration and invasion of T47-D breast cancer cells in three-dimensional matrices, which is reversed by transfection of cells with specific ezrin siRNAs. In conclusion, E2 promotes breast cancer cell movement and invasion by the activation of ezrin. These results provide novel insights into the effects of estrogen on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers.  相似文献   

7.
Nuclear receptors for 17 beta-estradiol (E(2)) are present in growth plate chondrocytes from both male and female rats and regulation of chondrocytes through these receptors has been studied for many years; however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the cell response. E(2) was found to directly affect the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E(2) activates protein kinase C (PKC) in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E(2)-dependent alkaline phosphatase activity and proteoglycan sulfation in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of the present study were: (1) to examine the effect of a cell membrane-impermeable 17 beta-estradiol-bovine serum albumin conjugate (E(2)-BSA) on chondrocyte proliferation, differentiation, and matrix synthesis; (2) to determine the pathway that mediates the membrane effect of E(2)-BSA on PKC; and (3) to compare the action of E(2)-BSA to that of E(2). Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10(-9) to 10(-7) M E(2) or E(2)-BSA and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [(3)H]-thymidine incorporation measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E(2)-BSA in the presence or absence of GDP beta S (inhibitor of G-proteins), GTP gamma S (activator of G-proteins), U73122 or D609 (inhibitors of phospholipase C [PLC]), wortmannin (inhibitor of phospholipase D [PLD]) or LY294002 (inhibitor of phosphatidylinositol 3-kinase). E(2)-BSA mimicked the effects of E(2) on alkaline phosphatase specific activity and proteoglycan sulfation, causing dose-dependent increases in both RC and GC cell cultures. Both forms of estradiol inhibited [(3)H]-thymidine incorporation, and the effect was dose-dependent. E(2)-BSA caused time-dependent increases in PKC in RC and GC cells; effects were observed within three minutes in RC cells and within one minute in GC cells. Response to E(2) was more robust in RC cells, whereas in GC cells, E(2) and E(2)-BSA caused a comparable increase in PKC. GDP beta S inhibited the activation of PKC in E(2)-BSA-stimulated RC and GC cells. GTP gamma S increased PKC in E(2)-BSA-stimulated GC cells, but had no effect in E(2)-BSA-stimulated RC cells. The phosphatidylinositol-specific PLC inhibitor U73122 blocked E(2)-BSA-stimulated PKC activity in both RC and GC cells, whereas the phosphatidylcholine-specific PLC inhibitor D609 had no effect. Neither the PLD inhibitor wortmannin nor the phosphatidylinositol 3-kinase inhibitor LY294022 had any effect on E(2)-BSA-stimulated PKC activity in either RC or GC cells. The classical estrogen receptor antagonist ICI 182780 was unable to block the stimulatory effect of E(2)-BSA on PKC. Moreover, the classical receptor agonist diethylstilbestrol (DES) had no effect on PKC, nor did it alter the stimulatory effect of E(2)-BSA. The specificity of the membrane response to E(2) was also demonstrated by showing that the membrane receptor for 1 alpha,25-(OH)(2)D(3) was not involved. These data indicate that the rapid nongenomic effect of E(2)-BSA on PKC activity in RC and GC cells is dependent on G-protein-coupled PLC and support the hypothesis that many of the effects of E(2) involve membrane-associated mechanisms independent of classical estrogen receptors. (c) 2001 Wiley-Liss, Inc.  相似文献   

8.
9.
The anti-diabetic drug metformin reduces human cancer incidence and improves the survival of cancer patients, including those with breast cancer. We studied the activity of metformin against diverse molecular subtypes of breast cancer cell lines in vitro. Metformin showed biological activity against all estrogen receptor (ER) positive and negative, erbB2 normal and abnormal breast cancer cell lines tested. It inhibited cellular proliferation, reduced colony formation and caused partial cell cycle arrest at the G1 checkpoint. Metformin did not induce apoptosis (as measured by DNA fragmentation and PARP cleavage) in luminal A, B or erbB2 subtype breast cancer cell lines. At the molecular level, metformin treatment was associated with a reduction of cyclin D1 and E2F1 expression with no changes in p27kip1 or p21waf1. It inhibited mitogen activated protein kinase (MAPK) and Akt activity, as well as the mammalian target of rapamycin (mTOR) in both ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells. In erbB2-overexpressing breast cancer cell lines, metformin reduced erbB2 expression at higher concentrations, and at lower concentrations within the therapeutic range, it inhibited erbB2 tyrosine kinase activity evidenced by a reduction of phosphorylated erbB2 (P-erbB2) at both auto- and Src- phosphorylation sites. These data suggest that metformin may have potential therapeutic utility against ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells.  相似文献   

10.
The expression of GnRH (GnRH-I, LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the ovary. The proliferation of human ovarian cancer cell lines is time- and dose-dependently reduced by GnRH and its superagonistic analogs. The classical GnRH receptor signal-transduction mechanisms, known to operate in the pituitary, are not involved in the mediation of antiproliferative effects of GnRH analogs in these cancer cells. The GnRH receptor rather interacts with the mitogenic signal transduction of growth-factor receptors and related oncogene products associated with tyrosine kinase activity via activation of a phosphotyrosine phosphatase resulting in downregulation of cancer cell proliferation. In addition GnRH activates nucleus factor κB (NFκB) and protects the cancer cells from apoptosis. Furthermore GnRH induces activation of the c-Jun N-terminal kinase/activator protein-1 (JNK/AP-1) pathway independent of the known AP-1 activators, protein kinase (PKC) or mitogen activated protein kinase (MAPK/ERK).  相似文献   

11.
Azurin is a member of a family of metalloproteins called cupredoxins. Although previously thought to be involved in electron transfer, azurin has recently been shown to preferentially enter cancer cells than normal cells and induce apoptosis in such cells. Azurin also demonstrates structural similarity to a ligand known as ephrinB2, which binds its cognate receptor tyrosine kinase EphB2 to initiate cell signaling. Eph/ephrin signaling is known to be involved in cancer progression. We now demonstrate that azurin binds to the EphB2-Fc receptor with high affinity. We have localized a C-terminal domain of azurin (Azu 96-113) that exhibits structural similarity to ephrinB2 at the G-H loop region known to be involved in receptor binding. A synthetic peptide (Azu 96-113) as well as a GST fusion derivative GST-Azu 88-113 interferes with the growth of various human cancer cells. In a prostate cancer cell line DU145 lacking functional EphB2, azurin or its GST-fusion derivatives had little cytotoxic effect. However, in DU145 cells expressing functional EphB2, azurin and GST-Azu 88-113 demonstrated significant cytotoxicity, whereas ephrinB2 promoted cell growth. Azurin inhibited the ephrinB2-mediated autophosphorlyation of the EphB2 tyrosine residue, thus interfering in upstream cell signaling and contributing to cancer cell growth inhibition.  相似文献   

12.
Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer   总被引:20,自引:0,他引:20  
Chemotherapy or irradiation treatment induces breast cancer cell apoptosis, but this can be limited by estradiol (E2) through unknown mechanisms. To investigate this, we subjected estrogen receptor-expressing human breast cancer cells (MCF-7 and ZR-75-1) to paclitaxel (taxol) or to UV irradiation. Marked increases in cell apoptosis were induced, but these were significantly reversed by incubation with E2. Taxol or UV stimulated c-Jun N-terminal kinase (JNK) activity, which was inhibited by E2. Expression of a dominant-negative Jnk-1 protein strongly prevented taxol- or UV-induced apoptosis, whereas E2 inhibition of apoptosis was reversed by expression of constituitively active Jnk-1. As targets for participation in apoptosis, Bcl-2 and Bcl-xl were phosphorylated in response to JNK activation by taxol or UV; this was prevented by E2. Taxol or UV activated caspase activity in a JNK-dependent fashion and caused the cleavage of procaspase-9 to caspase-9, each inhibited by E2. Independently, the steroid also activated extracellular signal-regulated protein kinase activity, which contributed to the antiapoptotic effects. We report novel and rapid mechanisms by which E2 prevents chemotherapy or radiation-induced apoptosis of breast cancer, probably mediated through the plasma membrane estrogen receptor.  相似文献   

13.
Cell cycle control in breast cancer cells   总被引:16,自引:0,他引:16  
In breast cancer, cyclins D1 and E and the cyclin-dependent kinase inhibitors p21 (Waf1/Cip1)and p27 (Kip1) are important in cell-cycle control and as potential oncogenes or tumor suppressor genes. They are regulated in breast cancer cells following mitogenic stimuli including activation of receptor tyrosine kinases and steroid hormone receptors, and their deregulation frequently impacts on breast cancer outcome, including response to therapy. The cyclin-dependent kinase inhibitor p16 (INK4A) also has a critical role in transformation of mammary epithelial cells. In addition to their roles in cell cycle control, some of these molecules, particularly cyclin D1, have actions that are not mediated through regulation of cyclin-dependent kinase activity but may be important for loss of proliferative control during mammary oncogenesis.  相似文献   

14.
15.
16.
Synthesis of the biologically active oestrogen, oestradiol, within breast tumours makes an important contribution to the high concentrations of oestrogens which are present in malignant breast tissues. In breast tumours, oestrone is preferentially converted to oestradiol by the Type I oestradiol 17β-hydroxysteroid dehydrogenase (E2DH). Several growth factors, such as insulin-like growth factor Type I, and cytokines, such as Tumour Necrosis Factor (TNF), have been shown to stimulate E2DH activity in MCF-7 breast cancer cells. As little is known about the regulation of Type I E2DH expression and activity in other breast cancer cell lines, the expression and activity of this enzyme was examined in other oestrogen receptor positive and also oestrogen receptor negative breast cancer cell lines. As it is possible that E2DH activity may be limited by co-factor availability, the effects of exogenous co-factors on enzyme activity in these cell lines was also investigated. For T47D and BT20 breast cancer cells, the addition of exogenous co-factors was found to enhance enzyme activity. TNF, in addition to stimulating E2DH activity in MCF-7 cells, also increased activity in T47D and MDA-MB-231 cells, although to a lesser extent than in MCF-7 cells. An investigation of signalling pathways involved in the regulation of E2DH activity revealed that stimulation of both the protein kinase C (PKC) and PKA pathways may be involved in regulation of E2DH activity. As several growth factors and cytokines have now been found to be involved in regulating E2DH activity, the role that macrophages and lymphocytes have in supplying these factors and the mechanism by which these factors may stimulate tumour growth, is also reviewed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号