首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The gene 4 protein of bacteriophage T7 is a multifunctional enzyme that catalyzes (i) the hydrolysis of nucleoside 5'-triphosphates, (ii) the synthesis of tetraribonucleotide primers at specific recognition sequences on a DNA template, and (iii) the unwinding of duplex DNA. All three activities depend on binding of gene 4 protein to single-stranded DNA followed by unidirectional 5' to 3' translocation of the protein (Tabor, S., and Richardson, C. C. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 205-209). Binding of gene 4 protein to single-stranded DNA, assayed by retention of DNA-protein complexes on nitrocellulose filters, is random with regard to DNA sequence. Although gene 4 protein does not bind to duplex DNAs, the presence of a 240-nucleotide-long single-stranded tail on a 7200-base pair duplex DNA molecule is sufficient for gene 4 protein to cause retention of the DNA on a filter. The binding reaction requires, in addition to MgCl2, the presence of a nucleoside 5'-triphosphate, but binding is not dependent on hydrolysis; nucleoside 5'-diphosphate will substitute for nucleoside 5'-triphosphate. Of the eight common nucleoside triphosphates, dTTP promotes optimal binding. The half-life of the gene 4 protein-DNA complex depends on both the secondary structure of the DNA and on whether or not the nucleoside 5'-triphosphate cofactor can be hydrolyzed. Using the nonhydrolyzable nucleoside 5'-triphosphate analog, beta,gamma-methylene dTTP, the half-life of the gene 4 protein-DNA complex is greater than 80 min. In the presence of the hydrolyzable nucleoside 5'-triphosphate, dTTP, the half-life of the gene 4 protein-DNA complex using circular M13 DNA is at least 4 times longer than that observed using linear M13 DNA.  相似文献   

4.
5.
6.
Gene 4 protein and DNA polymerase of bacteriophage T7 catalyze RNA-primed DNA synthesis on single-stranded DNA templates. T7 DNA polymerase exhibits an affinity for both gene 4 protein and single-stranded DNA, and gene 4 protein binds stably to single-stranded DNA in the presence of dTTP (Nakai, H. and Richardson, C. C. (1986) J. Biol. Chem. 261, 15208-15216). Gene 4 protein-T7 DNA polymerase-template complexes may be formed in both the presence and absence of nucleoside 5'-triphosphates. The protein-template complexes may be isolated free of unbound proteins and nucleotides by gel filtration and will catalyze RNA-primed DNA synthesis in the presence of ATP, CTP, and the four deoxynucleoside 5'-triphosphates. RNA-primed DNA synthesis may be dissected into separate reactions for primer synthesis and DNA synthesis. Upon incubation of gene 4 protein with single-stranded DNA, ATP, and CTP, a primer-template complex is formed; it is likely that gene 4 protein mediates stable binding of the oligonucleotide to the template. The complex, purified free of unbound proteins and nucleotides, supports DNA synthesis upon addition of DNA polymerase and deoxynucleoside 5'-triphosphates. Association of primers with the template is increased by the presence of dTTP or DNA polymerase during primer synthesis. DNA synthesis supported by primer-template complexes initiates predominantly at gene 4 recognition sequences, indicating that primers are bound to the template at these sites.  相似文献   

7.
Acyclovir triphosphate (ACVTP) was a substrate for herpes simplex virus type 1 (HSV-1) DNA polymerase and was rapidly incorporated into a synthetic template-primer designed to accept either dGTP or ACVTP followed by dCTP. HSV-1 DNA polymerase was not inactivated by ACVTP, nor was the template-primer with a 3'-terminal acyclovir monophosphate moiety a potent inhibitor. Potent inhibition of HSV-1 DNA polymerase was observed upon binding of the next deoxynucleoside 5'-triphosphate coded by the template subsequent to the incorporation of acyclovir monophosphate into the 3'-end of the primer. The Ki for the dissociation of dCTP (the "next nucleotide") from this dead-end complex was 76 nM. In contrast, the Km for dCTP as a substrate for incorporation into a template-primer containing dGMP in place of acyclovir monophosphate at the 3'-primer terminus was 2.6 microM. The structural requirements for effective binding of the next nucleotide revealed that the order of potency of inhibition of a series of analogs was: dCTP much greater than arabinosyl-CTP greater than 2'-3'-dideoxy-CTP much greater than CTP, dCMP, dCMP + PPi. In the presence of the next required deoxynucleotide (dCTP), high concentrations of dGTP compete with ACVTP for binding and thus retard the formation of the dead-end complex. This results in a first-order loss of enzyme activity indistinguishable from that expected for a mechanism-based inactivator. The reversibility of the dead-end complex was demonstrated by steady-state kinetic analysis, analytical gel filtration, and by rapid gel filtration through Sephadex G-25. Studies indicated that potent, reversible inhibition by ACVTP and the next required deoxynucleoside 5'-triphosphate also occurred when poly(dC)-oligo(dG) or activated calf thymus DNA were used as the template-primer.  相似文献   

8.
Factor D, a template-selective DNA polymerase-alpha stimulatory protein from mouse liver (Fry, M., Lapidot, J., and Weisman-Shomer, P. (1985) Biochemistry 24, 7549-7556) is shown here to enhance the activities of diverse DNA polymerases with a cognate template specificity. DNA synthesis catalyzed by Escherichia coli DNA polymerase I, avian myeloblastosis virus polymerase, and some mammalian alpha- and gamma-polymerases was increased by factor D. With every enhanced polymerase, factor D increased the rate of copying of only poly(dT) among various tested synthetic poly-deoxynucleotides. Of the natural DNA templates examined, rates of copying of sparsely primed denatured DNA and of singly primed circular phi X174 or M13 bacteriophage DNA, but not of activated DNA, were enhanced. Michaelis constants (Km) of affected templates with responsive polymerases were decreased by factor D, without alteration in maximum velocity (Vmax). By contrast, factor D increased Vmax of deoxyribonucleoside 5'-monophosphate incorporation without changing Km of deoxyribonucleoside 5'-triphosphate substrates. Binding of factor D to poly(dT), poly(dA).poly(dT), and DNA, but less to poly(dA), was indicated by specific retention of their complexes on a DEAE-cellulose column. That factor D does not bind to DNA polymerase-alpha or to its complex with the DNA template was demonstrated by the failure of the factor to be coprecipitated with alpha-polymerase by anti-polymerase-alpha monoclonal antibodies in either the absence or presence of various templates. Lack of binding of factor D to the polymerase molecule was also indicated by simultaneous maximum stimulation of two competing polymerases by a limiting amount of factor. These combined results suggest that the enhancement of DNA synthesis is exerted through interaction of factor D with the template. It is proposed that this association leads to a tighter binding of the polymerase to the template and facilitates DNA synthesis.  相似文献   

9.
The ability of herpes simplex virus type 1 (HSV-1) DNA polymerase, HeLa polymerase alpha, and HeLa polymerase beta to utilize several dGTP analogues has been investigated using a defined synthetic template primer. The relative efficiencies of the triphosphates of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir triphosphate, ACVTP), 9-[(1,3-dihydroxy-2-propoxy)methyl] guanine (ganciclovir triphosphate, DHPGTP), and 2',3'-dideoxyguanosine (ddGTP) as substrates for the three polymerases were: HSV-1 polymerase, dGTP greater than ACVTP approximately equal to DHPGTP greater than ddGTP; polymerase alpha, dGTP greater than ACVTP approximately equal to DHPGTP much greater than ddGTP; polymerase beta, ddGTP greater than dGTP much greater than ACVTP approximately equal to DHPGTP. The potent inhibition of HSV-1 polymerase by ACVTP has been shown previously to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3' end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism was shown here to be a general mechanism for inhibition of polymerases by the obligate chain terminators, ACVTP and ddGTP. The ACVTP-induced inhibition was 30-fold more potent with HSV-1 polymerase than with polymerase alpha. This difference may contribute to the antiviral selectivity of this nucleotide analogue. The effect of ganciclovir monophosphate incorporation (a nonobligate chain terminator) on subsequent primer extension was also evaluated. With HSV-1 polymerase and polymerase alpha, although there was a considerable reduction in the efficiency of utilization of the 3'-DHPGMP-terminal primer, contrasting kinetic behavior was observed. With HSV-1 polymerase, insertion of DHPGTP resulted in a significant reduction in Vmax for subsequent nucleotide incorporations. In contrast, with polymerase alpha, a relatively small decrease in Vmax was accompanied by increased Km values for subsequent nucleotide incorporations.  相似文献   

10.
U von D?beln 《Biochemistry》1977,16(20):4368-4371
Ribonucleotide reductase is responsible for the production of deoxyribonucleotides by catalyzing the reduction of ribonucleoside diphosphates. The enzyme is allosterically regulated in a complex way by the nucleoside triphosphates, ATP, dTTP, dGTP, dCTP, and dATP. Ribonucleotide reductase consists of two nonidentical subunits, proteins B1 and B2. Both substrates and allosteric effectors bind exclusively to B1. Binding of protein B1 to dTTP or dATP covalently coupled to Sepharose and elution with concentration gradients of the different nucleoside triphosphate effectors gave information about (1) the arrangement of the effector binding sites on protein B1 and (2) the affinity of the effectors for these sites. Protein B1 thus has two classes of effector binding sites. One class binds all effectors, as demonstrated by elution of the protein from dTTP-Sepharose with dATP, dGTP, ATP, or dCTP. The second class binds only dATP or ATP, since dATP and ATP were the only nucleotides which eluted protein B1 from dATP-Sepharose. These results confirm earlier data obtained by dialysis binding experiments. The eluting concentrations obtained for the different nucleoside triphosphates in experiments with dTTP-Sepharose could be used to calculate unknown dissociation constants for protein B1 -effector binary complexes. This was possible, since a plot of the eluting concentrations vs. known dissociation constants was linear.  相似文献   

11.
The potent inhibition of herpes simplex type 1 (HSV-1) DNA polymerase by acyclovir triphosphate has previously been shown to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3'-end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism of inhibition of HSV-1 DNA polymerase has been used here to design an affinity column for the enzyme. A DNA hook template-primer containing an acyclovir monophosphate residue on the 3'-primer terminus has been synthesized and attached to a resin support. In the absence of added nucleotides, the column behaves as a simple DNA-agarose column, and HSV-1 DNA polymerase can be chromatographed using a salt gradient. The presence of the next required nucleotide encoded by the template (dGTP) increases the affinity of HSV-1 DNA polymerase for the acyclovir monophosphate terminal primer-template attached to the resin, and the enzyme is retained even in the presence of 1 M salt. The enzyme can be eluted from the column with a salt gradient after removal of the nucleotide from the buffer. Traditionally, the affinity purification of an enzyme relies on elution by a salt gradient, pH gradient, or more selectively by addition of a competing ligand (substrate/inhibitor) to the elution buffer. In the present example, elution of HSV-1 polymerase is facilitated by removal of the substrate from the buffer. This represents an example of mechanism-based affinity chromatography.  相似文献   

12.
The interaction of deoxyribonucleoside-5'-mono-, di- and triphosphates with E. coli DNA polymerase I Klenow fragments was examined. Dissociation constants of the enzyme complex with nucleotides were determined from the data on the enzyme inactivation by adenosine 2',3'-riboepoxide 5'-triphosphate. The role of nucleotide bases, phosphate groups and sugar moieties in the complex formation of nucleotides with the enzyme was elucidated. The necessity of complementary interaction of nucleotides with templates for template-controlled 'adjusting' of complementary dNTP to its reactive state was found. The crucial role of the interaction of dNTP gamma-phosphate with the enzyme in this process is discussed.  相似文献   

13.
Xia Z  Azurmendi HF  Mildvan AS 《Biochemistry》2005,44(46):15334-15344
The MutT pyrophosphohydrolase, in the presence of Mg2+, catalyzes the hydrolysis of nucleoside triphosphates by nucleophilic substitution at Pbeta, to yield the nucleotide and PP(i). The best substrate for MutT is the mutagenic 8-oxo-dGTP, on the basis of its Km being 540-fold lower than that of dGTP. Product inhibition studies have led to a proposed uni-bi-iso kinetic mechanism, in which PP(i) dissociates first from the enzyme-product complex (k3), followed by NMP (k4), leaving a product-binding form of the enzyme (F) which converts to the substrate-binding form (E) in a partially rate-limiting step (k5) [Saraswat, V., et al. (2002) Biochemistry 41, 15566-15577]. Single- and multiple-turnover kinetic studies of the hydrolysis of dGTP and 8-oxo-dGTP and global fitting of the data to this mechanism have yielded all of the nine rate constants. Consistent with an "iso" mechanism, single-turnover studies with dGTP and 8-oxo-dGTP hydrolysis showed slow apparent second-order rate constants for substrate binding similar to their kcat/Km values, but well below the diffusion limit (approximately 10(9) M(-1) s(-1)): k(on)app = 7.2 x 10(4) M(-1) s(-1) for dGTP and k(on)app = 2.8 x 10(7) M(-1) s(-1) for 8-oxo-dGTP. These low k(on)app values are fitted by assuming a slow iso step (k5 = 12.1 s(-1)) followed by fast rate constants for substrate binding: k1 = 1.9 x 10(6) M(-1) s(-1) for dGTP and k1 = 0.75 x 10(9) M(-1) s(-1) for 8-oxo-dGTP (the latter near the diffusion limit). With dGTP as the substrate, replacing Mg2+ with Mn2+ does not change k1, consistent with the formation of a second-sphere MutT-M2+-(H2O)-dGTP complex, but slows the iso step (k5) 5.8-fold, and its reverse (k(-5)) 25-fold, suggesting that the iso step involves a change in metal coordination, likely the dissociation of Glu-53 from the enzyme-bound metal so that it can function as the general base. Multiple-turnover studies with dGTP and 8-oxo-dGTP show bursts of product formation, indicating partially rate-limiting steps following the chemical step (k2). With dGTP, the slow steps are the chemical step (k2 = 10.7 s(-1)) and the iso step (k5 = 12.1 s(-1)). With 8-oxo-dGTP, the slow steps are the release of the 8-oxo-dGMP product (k4 = 3.9 s(-1)) and the iso step (k5 = 12.1 s(-1)), while the chemical step is fast (k2 = 32.3 s(-1)). The transient kinetic studies are generally consistent with the steady state kcat and Km values. Comparison of rate constants and free energy diagrams indicate that 8-oxo-dGTP, at low concentrations, is a better substrate than dGTP because it binds to MutT 395-fold faster, dissociates 46-fold slower, and has a 3.0-fold faster chemical step. The true dissociation constants (KD) of the substrates from the E-form of MutT, which can now be obtained from k(-1)/k1, are 3.5 nM for 8-oxo-dGTP and 62 microM for dGTP, indicating that 8-oxo-dGTP binds 1.8 x 10(4)-fold tighter than dGTP, corresponding to a 5.8 kcal/mol lower free energy of binding.  相似文献   

14.
As part of an effort to explore the mechanism of potent, broad spectrum antiviral and anticancer activities of a number of ring-expanded ('fat') nucleosides that we recently reported, a representative 'fat' nucleoside 4,6-diamino-8-imino-8H-1-beta-D-ribofuranosylimidazo[4,5-e][1,3]di azepine (1) was converted to its 5'-triphosphate derivative (2), and biochemically screened for possible inhibition of nucleic acid polymerase activity, employing synthetic DNA templates and the bacteriophage T7 RNA polymerase as a representative polymerase. Our results suggest that 2 is a moderate inhibitor of T7 RNA polymerase, and that the 5'-triphosphate moiety of 2 appears to be essential for inhibition as nucleoside 1 alone failed to inhibit the polymerase reaction.  相似文献   

15.
16.
BuPdGTP , the 2'-deoxyribonucleoside 5'-triphosphate of the DNA polymerase alpha (pol alpha)-specific inhibitor, N2-(p-n- butylphenyl )guanine, was examined with respect to its mechanism and its capacity to inhibit the mammalian DNA polymerases, pol alpha, pol beta, and pol gamma. BuP dGTP was specifically inhibitory for pol alpha, with no discernible activity on pol beta and pol gamma. The potency of BuP dGTP is unprecedented, with an apparent Ki less than 10 nanomolar. The unusual potency of the BuP dGTP is derived primarily from the 5' alpha and beta phosphoryl moieties, whose binding to enzyme complements that of the base-linked butylphenyl substituent. BuP dGTP is competitive with dGTP and apparently not subject to polymerization. Experiments employing BuP dGTP in the presence of a non-complementary template suggest that the core polymerase or an associated coprotein contains dNTP binding sites which recognize specific nucleic acid bases. The partial sensitivity of selected, non-mammalian DNA polymerases suggests that modification of the N2 substituent of dGTP will be a useful route to the design of novel, polymerase-specific affinity-probes.  相似文献   

17.
DNA polymerase and gene 4 protein of bacteriophage T7 catalyze DNA synthesis on duplex DNA templates. Synthesis is initiated at nicks in the DNA template, and this leading strand synthesis results in displacement of one of the parental strands. In the presence of ribonucleoside 5'-triphosphates the gene 4 protein catalyzes the synthesis of oligoribonucleotide primers on the displaced single strand, and their extension by T7 dna polymerase accounts for lagging strand synthesis. Since all the oligoribonucleotide primers bear adenosine 5'-triphosphate residues at their 5' termini, [gamma 32P]ATP is incorporated specifically into the product molecule, thus providing a rapid and sensitive assay for the synthesis of the RNA primers. Both primer synthesis and DNA synthesis are stimulated 3- to 5-fold by the presence of either Escherichia coli or T7 helix-destabilizing protein (DNA binding protein). ATP and CTP together fully satisfy the requirement for rNTPs and provide maximum synthesis of primers and DNA. Provided that T7 DNA polymerase is present, RNA-primed DNA synthesis occurs on either duplex or single-stranded DNA templates and to equal extents on either strand of T7 DNA. No primer-directed DNA synthesis occurs on poly(dT) or poly(dG) templates, indicating that synthesis of primers is template-directed.  相似文献   

18.
Binding of the photoreactive ATP analog, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP), to the isolated alpha and beta subunits of TF1 and to the alpha 3 beta 3 "core" complex of the holoenzyme is described. About 1 mol of BzATP/mol of subunit was incorporated to isolated alpha and beta subunits. The incorporation of BzATP was prevented by ATP. Covalent binding of BzATP to the alpha subunit was in general somewhat lower than that observed with the beta subunit. No complex was formed upon mixing of either of the modified subunits with the complementary nontreated subunits. Covalent binding of 3 mol of BzATP/alpha 3 beta 3 complex completely inhibited ATPase activity and resulted in the dissociation of the complex. The labeled nucleotide analog was specifically incorporated into the beta subunit of the complex. The holoenzyme TF1, in contrast to the core complex, did not dissociate to the individual subunits upon covalent binding of BzATP. These results are discussed in relation to the location of the catalytic nucleotide binding site(s) and the conformation stability of the alpha 3 beta 3 core complex of TF1.  相似文献   

19.
20.
Xanthine (Xan) and oxanine (Oxa) are the major deamination products of guanine formed by the treatment with nitrogen oxides (e.g., NO and HNO2). In this study, 2'-deoxyribonucleoside 5'-triphosphates of Xan and Oxa were prepared by the NaNO2 treatment of dGTP. These modified nucleotides were incorporated into oligonucleotides by DNA polymerase reactions. The repair activities of various DNA N-glycosylases for Xan and Oxa were examined using these substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号