首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   

3.
The proliferative response of bovine retinal capillary endothelial cells to EGF is dependent upon attaching the cells to a matrix of fibronectin. Bovine capillary endothelial cells are also stimulated to actively migrate when exposed to EGF in vitro. These activities provide an explanation for the angiogenic properties of EGF in vivo. Capillary cell migration and proliferation are proposed as sensitive quantifiable bioassays to explore the functional domains of the EGF molecule. Studies on the inactivation of these properties of EGF by specific cleavage of the molecule with CNBr or proteases suggest that an intact loop composed in part by amino acid residues 20 to 31 is essential for at least some functions.  相似文献   

4.
How angiogenesis is regulated by local environmental cues is still not fully understood despite its importance to many regenerative events. Although mechanics is known to influence angiogenesis, the specific cellular mechanisms influenced by mechanical loading are poorly understood. This study adopts a lattice-based modelling approach to simulate endothelial cell (EC) migration and proliferation in order to explore how mechanical stretch regulates their behaviour. The approach enables the explicit modelling of ECs and, in particular, their migration/proliferation (specifically, rate and directionality) in response to such mechanical cues. The model was first used to simulate previously reported experiments of EC migration and proliferation in an unloaded environment. Next, three potential effects (increased cell migration, increased cell proliferation and biased cellular migration) of mechanical stretch on EC behaviour were simulated using the model and the observed changes in cell population characteristics were compared to experimental findings. Combinations of these three potential drivers were also investigated. The model demonstrates that only by incorporating all three changes in cellular physiology (increased EC migration, increased EC proliferation and biased EC migration in the direction perpendicular to the applied strain) in response to dynamic loading, it is possible to successfully predict experimental findings. This provides support for the underlying model hypotheses for how mechanics regulates EC behaviour.  相似文献   

5.
Nacev BA  Liu JO 《PloS one》2011,6(9):e24793
Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.  相似文献   

6.
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis.  相似文献   

7.
A crude extract of human placenta has been demonstrated to stimulate growth, motility and the production of the proteases plasminogen activator and collagenase in cultured bovine capillary endothelial cells. These data are in keeping with the presence of an angiogenic factor(s) in human placenta.  相似文献   

8.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in angiogenesis through its involvement in endothelial cell-cell and cell-matrix interactions and signal transduction. Recent studies indicate that the cytoplasmic domain of PECAM-1 plays an important role in its cell adhesive and signaling properties. However, the role PECAM-1 isoforms play during angiogenic events such as cell adhesion and migration requires further delineation. To gain insight into the role PECAM-1 plays during vascular development and angiogenesis, we examined the expression pattern of PECAM-1 isoforms during kidney vascularization. We show that multiple isoforms of PECAM-1 are expressed during renal vascular development with different frequencies. The PECAM-1 that lacks exons 14 and 15 (14&15) was the predominant isoform detected in the renal vasculature. To further study PECAM-1 isoform-specific functions we isolated kidney endothelial cells (EC) from wild-type and PECAM-1-deficient (PECAM-1–/–) mice with B4-lectin-coated magnetic beads. PECAM-1–/– kidney EC showed reduced migration, inability to undergo capillary morphogenesis in Matrigel, dense peripheral focal adhesions, and peripheral cortical actin distribution compared with wild-type cells. PECAM-1–/– kidney EC secreted increased amounts of fibronectin and decreased amounts of tenascin-C and thrombospondin-1. Reexpression of 14&15, but not full-length, PECAM-1 in PECAM-1–/– kidney EC restored cell migration and capillary morphogenesis defects. Thus PECAM-1 may regulate the adhesive and migratory properties of kidney EC in an isoform-specific fashion through modulation of integrin activity and extracellular matrix protein expression. Our results indicate that regulated expression of specific PECAM-1 isoforms may enable EC to accommodate the different stages of angiogenesis. CD31; alternative splicing; angiogenesis; integrins; extracellular matrix  相似文献   

9.
Dysregulated angiogenesis contributes to the pathogenesis of chronic inflammatory diseases. Modulation of the extracellular matrix by immune-derived proteases can alter endothelial cell–matrix interactions as well as endothelial cell sprouting, migration and capillary formation. Granzyme B is a serine protease that is expressed by a variety of immune cells, and accumulates in the extracellular milieu in many chronic inflammatory disorders that are associated with dysregulated angiogenesis. Although granzyme B is known to cleave fibronectin, an essential glycoprotein in vascular morphogenesis, the role of granzyme B in modulating angiogenesis is unknown. In the present study, granzyme B cleaved both plasma fibronectin and cell-derived fibronectin, resulting in the release of multiple fibronectin fragments. Granzyme B cleavage of fibronectin resulted in a dose-dependent reduction in endothelial cell adhesion to fibronectin as well as reduced endothelial cell migration and tubular formation. These events were prevented when granzyme B activity was inhibited by a small molecule inhibitor. In summary, granzyme B-mediated cleavage of fibronectin contributes to attenuated angiogenesis through the disruption of endothelial cell — fibronectin interaction resulting in impaired endothelial cell migration and tubular formation.  相似文献   

10.
Tumor progression requires normally quiescent endothelial cells to form new vascular networks. This angiogenesis is dependent upon several soluble factors, prominent among which is vascular endothelial growth factor (VEGF). Other tumor-associated molecules, such as gangliosides, sialic acid-containing glycosphingolipids expressed by tumor cells and shed into the tumor microenvironment, may also modulate tumor angiogenesis. Here we assessed the influence of a highly purified ganglioside, G(D1a), on responses of normal human umbilical vein endothelial cells (HUVEC) to VEGF. Preincubation of HUVEC with G(D1a) enhanced VEGF-induced cell proliferation; 10 microM G(D1a) caused a twofold increase in DNA synthesis. The migration of HUVEC across a VEGF gradient was also enhanced by 50%, even with only a brief (1 h) preexposure of the cells to the same concentration of G(D1a). These findings suggest that gangliosides shed by tumor cells can promote tumor angiogenesis by enhancing the VEGF response of endothelial cells in the tumor microenvironment.  相似文献   

11.
A critical role for Syk in endothelial cell proliferation and migration   总被引:6,自引:0,他引:6  
Syk is a protein-tyrosine kinase that is widely expressed in haematopoietic cells and involved in coupling activated immunoreceptors to downstream signaling. On the other hand, Syk-deficient mice showed severe petechiae in utero and died shortly after birth. Recently we have shown the expression of Syk in endothelial cells and morphological defects of these cells in embryonic Syk-deficient mice. Here we report that both proliferation and migration of human umbilical vein endothelial cells were severely impaired by adenovirus-mediated expression of Syk dominant negative mutants. Furthermore, a close relationship between Syk kinase activity and extracellular signal-regulated kinase activation was suggested. Our results indicate that Syk plays a critical role in endothelial cell functions, including morphogenesis, cell growth, migration, and survival, and contributes to maintaining vascular integrity in vivo.  相似文献   

12.
Sympathetic nerves may play a role in vascular disorders of the eye. In the present study, we hypothesized that activation of beta3-adrenergic receptors on retinal endothelial cells would promote migration and proliferation of these cells, two markers of an angiogenic phenotype. We show, for the first time, expression of beta3-adrenergic receptors on cultured retinal endothelial cells. Activation of these receptors with BRL37344, a specific beta3-adrenergic receptor agonist, promoted migration that was blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K), the mitogen activated protein kinase component MEK, and matrix metalloproteinases (MMPs) 2 and 9. BRL37344 stimulated proliferation, which could be blocked by inhibitors of Src, PI3K, and MEK. These cells also express the beta1-adrenergic receptor with no beta2-adrenergic receptor expression observed. Stimulation of the beta1-adrenergic receptor with xamoterol, a specific partial agonist, did not promote proliferation or migration. These results support the hypothesis that beta3-adrenergic receptors play a role in proliferation and migration of cultured human retinal endothelial cells.  相似文献   

13.
Abnormal angiogenesis underlies many pathological conditions and is critical for the growth and maintenance of various types of tumors, including hormone-dependent cancers. Since estrogens are potent carcinogens in humans and rodents, and are involved in regulating angiogenesis, this study was designed to examine the effect of estrogen on the behavior of an established bovine capillary endothelial cell line, a simple and physiologically relevant model of the capillary wall. The results demonstrate that 17-estradiol (E2), at different conditions, exerts both stimulatory and inhibitory effects on endothelial cell adhesion, proliferation and tube formation in vitro. Utilizing a cellular attachment assay, chronic exposure to nanomolar concentrations of E2 (i.e. 1 and 10 nM) increased endothelial cell adhesion significantly compared to vehicle treated controls. Cellular adhesion was inhibited by micromolar concentrations of E2. Cell count, PCNA immunohistochemistry and Western blot analysis demonstrated enhanced cell proliferation at low E2 concentration in estrogen-deplete medium. Inhibition of cellular proliferation was observed in both estrogen-replete and deplete medium at higher E2 concentrations (i.e. 1 and 10 µM). Furthermore, in vitro tube formation increased up to 3.0 fold in the presence of 10 nM and higher E2 concentrations. The present observations indicate that in vitro regulation of capillary endothelial cell adhesion, proliferation and capillary tube formation by estrogen, are dose dependent.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is a potent inducer of endothelial cell (EC) proliferation and migration in vitro as well as inflammation in vivo. We showed recently that VEGF effect on vascular permeability was dependent on the synthesis of platelet-activating factor (PAF) by EC. Consequently, we sought to evaluate by antisense knockdown of gene expression the contribution of VEGF receptors (Flt-1 and Flk-1) on these events. VEGF (10(-11) to 10(-8) M) elicited a dose-dependent increase of bovine aortic EC proliferation, migration, and PAF synthesis by up to 2.05-, 1.31- and 35.9-fold above basal levels, respectively. A treatment with two modified antisense oligomers (1-5 x 10(-7) M) directed against Flk-1 mRNA blocked by 100, 91, and 85% the proliferation, migration, and PAF synthesis mediated by VEGF, respectively. A treatment with two antisense oligomers directed against Flt-1 mRNA failed to modulate these activities. The use of placenta growth factor (up to 10(-8) M), an Flt-1-specific agonist, induced only a slight increase (0.6-fold) of PAF synthesis. These data illustrate the crucial role of Flk-1 in EC stimulation by VEGF. The capacity to inhibit the protein synthesis of Flt-1 and Flk-1 by antisense oligonucleotides provides a new approach to block VEGF pathological effects in vivo.  相似文献   

15.
Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis.  相似文献   

16.
This study was designed to determine the presence of Eph B4 or ephrin B2 in human retinal endothelial cells (REC) and their signal transduction. Human retinal endothelial cells were stimulated with an Eph B4/Fc chimera and probed for phosphorylation of phosphatidylinositol-3-kinase (PI3K), Src, and mitogen-activated protein kinase (MAPK) pathways. Proliferation and migration were investigated after Eph B4/Fc stimulation in the presence of various pathway inhibitors. Human retinal endothelial cells express ephrin B2, with little expression of Eph B4. Treatment with EphB4/Fc chimera resulted in activation of PI3K, Src, and MAPK pathways. Eph B4-stimulated endothelial cell proliferation was mediated via PI3K, nitric oxide synthase, and extracellular signal-regulated kinase 1/2 (ERK1/2). Blockade of Src-PI3K pathways produced significant attenuation of Eph B4/Fc-stimulated migration. These results demonstrate for the first time that ephrin B2 is present in human retinal endothelial cells. Additionally, it appears that vascular growth may be modulated in the retina through activation of the PI3K pathway and its downstream components.  相似文献   

17.
Shyu KG  Tsai SC  Wang BW  Liu YC  Lee CC 《Life sciences》2004,76(7):813-826
Saikosaponin C is one of the saikosaponins that are consisted in a Chinese herb, Radix Bupleuri. Recently, saikosaponins have been reported to have properties of cell growth inhibition, inducing cancer cells differentiation and apoptosis. However, saikosaponin C had no correlation with cell growth inhibition. In this study, we investigated the role of saikosaponin C on the growth of endothelial cells and angiogenesis. We found that saikosaponin C yielded a potent effect on inducing human umbilical vein endothelial cells (HUVECs) viability and growth. In addition to inducing endothelial cells growth, saikosaponin C also induced endothelial cells migration and capillary tube formation. The gene expression or activation of matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF) and the p42/p44 mitogen-activated protein kinase (MAPK, ERK) that correlated with endothelial cells growth, migration and angiogenesis were also induced by saikosaponin C. From these results, we suggest that saikosaponin C may have the potential for therapeutic angiogenesis but is not suitable for cancer therapy.  相似文献   

18.
19.
Apoptosis plays a critical role during development and in the maintenance of the vascular system. B-cell leukemia lymphoma 2 (bcl-2) protects endothelial cells (EC) from apoptosis in response to a variety of stimuli. Previous work from this laboratory demonstrated attenuation of postnatal retinal vascular development and retinal neovascularization during oxygen-induced ischemic retinopathy in bcl-2-deficient (bcl-2-/-) mice. To gain further insight into the function of bcl-2 in the endothelium, we isolated retinal EC from bcl-2+/+ and bcl-2-/- mice. Retinal EC lacking bcl-2 demonstrated reduced cell migration, tenascin-C expression, and adhesion to vitronectin and fibronectin. The bcl-2-/- retinal EC also failed to undergo capillary morphogenesis in Matrigel. In addition, using an ex vivo angiogenesis assay, we observed reduced sprouting from aortic rings grown in culture from bcl-2-/- mice compared with bcl-2+/+ mice. Furthermore, reexpression of bcl-2 was sufficient to restore migration and capillary morphogenesis defects observed in bcl-2-/- retinal EC. Mechanistically, bcl-2-/- cells expressed significantly less endothelial nitric oxide synthase, an important downstream effecter of proangiogenic signaling. This may be attributed to increased oxidative stress in the absence of bcl-2. In fact, incubation of retinal EC or aortic rings from bcl-2-/- mice with the antioxidant N-acetylcysteine rescued their capillary morphogenesis and sprouting defects. Thus, bcl-2-mediated cellular functions play important roles not only in survival but also in proangiogenic phenotype of EC with a significant impact on vascular development and angiogenesis.  相似文献   

20.
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia   总被引:39,自引:0,他引:39  
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号