首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA binding and dimerization motif, with apparent amphipathic helices (the HLH motif), has recently been identified in various proteins, including two that bind to immunoglobulin enhancers (E12 and E47). We show here that various HLH proteins can bind as apparent heterodimers to a single DNA motif and also, albeit usually more weakly, as apparent homodimers. The HLH domain can mediate heterodimer formation between either daughterless, E12, or E47 (Class A) and achaete-scute T3 or MyoD (Class B) to form proteins with high affinity for the kappa E2 site in the immunoglobulin kappa chain enhancer. The achaete-scute T3 and MyoD proteins do not form kappa E2-binding heterodimers together, and no active complex with N-myc was evident. The formation of a heterodimer between the daughterless and achaete-scute T3 products may explain the similar phenotypes of mutants at these two loci and the genetic interactions between them. A role of E12 and E47 in mammalian development, analogous to that of daughterless in Drosophila, is likely.  相似文献   

2.
3.
The protein Id: a negative regulator of helix-loop-helix DNA binding proteins   总被引:261,自引:0,他引:261  
We have isolated a cDNA clone encoding a novel helix-loop-helix (HLH) protein, Id. Id is missing the basic region adjacent to the HLH domain that is essential for specific DNA binding in another HLH protein, MyoD. An in vitro translation product of Id can associate specifically with at least three HLH proteins (MyoD, E12, and E47) and attenuate their ability to bind DNA as homodimeric or heterodimeric complexes. Id is expressed at varying levels in all cell lines tested. In three cell lines that can be induced to undergo terminal differentiation, Id RNA levels decrease upon induction. Transfection experiments indicate that over-expression of Id inhibits the trans-activation of the muscle creatine kinase enhancer by MyoD. Based on these findings, we propose that HLH proteins lacking a basic region may negatively regulate other HLH proteins through the formation of nonfunctional heterodimeric complexes.  相似文献   

4.
Although the ubiquitous helix-loop-helix (HLH) protein E12 does not homodimerize efficiently, the myogenic factor MyoD forms an avid DNA-binding heterodimer with E12 through the conserved HLH dimerization domain. However, the mechanism which ensures this selective dimerization is not understood at present. In our functional studies of various amino acid changes in the E12 HLH domain, we found that a single substitution in E12 helix 1 can abolish the effect of the E12 inhibitory domain and results in the efficient DNA binding of the E12 homodimer. Competition experiments revealed that the inhibitory domain, in fact, blocks the dimerization of E12 rather than DNA binding. MyoD contains two glutamic residues in helix 2 that are required for efficient dimerization with E12. More importantly, these residues were not essential for dimerization with E12 mutants in which the dimerization inhibitory domain had been relaxed, or for dimerization with E47 which does not contain the inhibitory domain owing to the use of an alternative exon. The positions of these glutamic residues are conserved among the four myogenic factors. Thus, members of the MyoD family of gene regulatory proteins can overcome the E12 dimerization inhibitory domain through a mechanism involving, in part, the negatively charged amino acid residues in helix 2. This result describes a novel mechanism facilitating the selective formation of the MyoD(MRF)-E12 heterodimer that enhances dimerization specificity and may apply to other members of the E-protein family.  相似文献   

5.
Recent studies have identified a family of DNA-binding proteins that share a common DNA-binding and dimerization domain with the potential to form a helix-loop-helix (HLH) structure. Various HLH proteins can form heterodimers that bind to a common DNA sequence, termed the E2-box. We demonstrate here that E2-box-binding B-cell- and myocyte-specific nuclear factors contain subunits which are identical or closely related to ubiquitously expressed (E12/E47) HLH proteins. These biochemical function for E12/E47-like molecules in mammalian differentiation, similar to the genetically defined function of daughterless in Drosophila development.  相似文献   

6.
Two recombinant baculoviruses BcV-myf4 and BcV-myf5 have been constructed to synthesize the human myogenic determination factors myogenin (myf4) and myf5 in eucaryotic cells. Both recombinant proteins are localized to the nucleus of virus-infected Spodoroptera frugiperda (sf) insect cells and can be recovered as soluble factors. The virus-produced proteins exhibit high-affinity binding to a muscle-specific DNA sequence in the presence of the ubiquitous helix-loop-helix (HLH) protein E12, but only marginal binding in unsupplemented sf nuclear extracts. Both baculovirus-encoded myogenic factors are able to heterooligomerize with E12 in the absence of DNA-binding sites. We conclude from our results that these muscle-specific HLH proteins produced in eucaryotic cells largely depend on dimerization with E12 or similar HLH proteins to recognize the myosin-light-chain-enhancer-MEF-1-binding site. We have no evidence for intracellular protein modifications exerting major effects on the interaction between these factors and DNA.  相似文献   

7.
8.
9.
10.
11.
H Huang  M Tudor  T Su  Y Zhang  Y Hu    H Ma 《The Plant cell》1996,8(1):81-94
MADS domain proteins are members of a highly conserved family found in all eukaryotes. Genetic studies clearly indicate that many plant MADS domain proteins have different regulatory functions in flower development, yet they share a highly conserved DNA binding domain and can bind to very similar sequences. How, then, can these MADS box genes confer their specific functions? Here, we describe results from DNA binding studies of AGL1 and AGL2 (for AGAMOUS-like), two Arabidopsis MADS domain proteins that are preferentially expressed in flowers. We demonstrate that both proteins are sequence-specific DNA binding proteins and show that each binding consensus has distinct features, suggestion a mechanism for specificity. In addition, we show that the proteins with more similar amino acid sequences have more similar binding sequences. We also found that AGL2 binds to DNA in vitro as a dimer and determined the region of AGL2 that is sufficient for DNA binding and dimerization. Finally, we show that several plant MADS domain proteins can bind to DNA either as homodimers or as heterodimers, suggesting that the number of different regulators could be much greater than the number of MADS box genes.  相似文献   

12.
13.
14.
Id1, a helix-loop-helix (HLH) protein which lacks a DNA binding domain, has been shown to negatively regulate other members of the HLH family by direct protein-protein interactions, both in vitro and in vivo. In this study, we report the results of site-directed mutagenesis experiments aimed at defining the regions of Id1 which are important for its activity. We have found that the HLH domain of Id1 is necessary and nearly sufficient for its activity. In addition, we show that two amino acid residues at the amino terminus of the Id1 loop are critical for its activity, perhaps by specifying the correct dimerization partners. In this regard, replacing the first four amino acids of the loops of the basic HLH proteins E12 and E47 with the corresponding amino acids of Id1 confers Id1 dimerization specificity. These studies point to the loop region as an important structural and functional element of the Id subfamily of HLH proteins.  相似文献   

15.
A class of helix-loop-helix (HLH) proteins, including E2A (E12 and E47), E2-2, and HEB, that bind in vitro to DNA sequences present in the immunoglobulin (Ig) enhancers has recently been identified. E12, E47, E2-2, and HEB are each present in B cells. The presence of many different HLH proteins raises the question of which of the HLH proteins actually binds the Ig enhancer elements in B cells. Using monoclonal antibodies specific for both E2A and E2-2, we show that both E2-2 and E2A polypeptides are present in B-cell-specific Ig enhancer-binding complexes. E2-box-binding complexes in pre-B cells contain both E2-2 and E2A HLH subunits, whereas in mature B cells only E2A gene products are present. We show that the difference in E2-box-binding complexes in pre-B and mature B cells may be caused by differential expression of E2A and E2-2.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号