首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isometric and force-velocity properties of the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles were investigated immediately after and during recovery from a fatiguing stimulus regime (40 Hz for 330 ms every second for 180 s) in the anesthetized cat. The amplitude of the isometric twitch of FDL was unaffected but in soleus it remained depressed for much of the recovery period. Immediately after stimulation the twitch time to peak of FDL increased to 140% of the control (prefatigue) value and then reverted to control values. The maximum isometric tetanic tension (Po) developed by FDL was reduced to 67% of control values immediately after the stimulus regime, whereas soleus declined to 93% of control. Recovery of maximum force development was achieved after 45 min in FDL and after 15 min in soleus. The maximum speed of shortening of FDL was reduced to 63% of control values immediately after fatigue; despite some recovery within the first 30 min, it remained depressed during the remainder of the recovery period (up to 300 min). Maximum speed of shortening was unaltered in soleus. The a/Po value transiently increased to 176% of control values in FDL immediately after the fatigue regime but promptly returned to control values. Force-velocity properties of soleus were not affected by the stimulus regime. It is concluded that in FDL changes in the maximum speed of shortening and maximum isometric tension as a result of the stimulus regime are attributable to changes in the intrinsic behavior of cross-bridges and the metabolic status of the fibers, particularly in the fast-twitch fatigue-resistant fibers.  相似文献   

2.
Edman has reported that the force-velocity relationship (FVR) departs from Hill's classic hyperbola near 0.80 of measured isometric force (J Physiol 404: 301-321, 1988). The purpose of this study was to investigate the biphasic nature of the FVR in the rested state and after some recovery from fatigue in the rat medial gastrocnemius muscle in situ. Force-velocity characteristics were determined before and during recovery from fatigue induced by intermittent stimulation at 170 Hz for 100 ms each second for 6 min. Force-velocity data were obtained for isotonic contractions with 100 ms of 200-Hz stimulation, including several measurements with loads above 0.80 of measured isometric force. The force-velocity data obtained in this study were fit well by a double-hyperbolic equation. A departure from Hill's classic hyperbola was found at 0.88+/-0.01 of measured isometric force, which is higher than the approximately 0.80 reported by Edman et al. for isolated frog fibers. After 45 min of recovery, maximum shortening velocity was 86+/-2% of prefatigue, but neither curvature nor predicted isometric force was significantly different from prefatigue. The location of the departure from Hill's classic hyperbola was not different after this recovery from the fatiguing contractions. Including an isometric point in the data set will not yield the same values for maximal velocity and the degree of curvature as would be obtained using the double hyperbola approach. Data up to 0.88 of measured isometric force can be used to fit data to the Hill equation.  相似文献   

3.
Permeabilized rat soleus muscle fibers were subjected to rapid shortening/restretch protocols (20% muscle length, 20 ms duration) in solutions with pCa values ranging from 6.5 to 4.5. Force redeveloped after each restretch but temporarily exceeded the steady-state isometric tension reaching a maximum value approximately 2.5 s after relengthening. The relative size of the overshoot was <5% in pCa 6.5 and pCa 4.5 solutions but equaled 17% +/- 4% at pCa 6.0 (approximately half-maximal Ca2+ activation). Muscle stiffness was estimated during pCa 6.0 activations by imposing length steps at different time intervals after repeated shortening/restretch perturbations. Relative stiffness and relative tension were correlated (p < 0.001) during recovery, suggesting that tension overshoots reflect a temporary increase in the number of attached cross-bridges. Rates of tension recovery (k(tr)) correlated (p < 0.001) with the relative residual force prevailing immediately after restretch. Force also recovered to the isometric value more quickly at 5.7 < or = pCa < or = 5.9 than at pCa 4.5 (ANOVA, p < 0.05). These results show that k(tr) measurements underestimate the rate of isometric force development during submaximal Ca2+ activations and suggest that the rate of tension recovery is limited primarily by the availability of actin binding sites.  相似文献   

4.
We have studied the effect of myosin P-light chain phosphorylation on the isometric tension generated by skinned fibers from rabbit psoas muscle at 0.6 and 10 microM Ca2+. At the lower Ca2+ concentration, which produced 10-20% of the maximal isometric tension obtained at 10 microM Ca2+, addition of purified myosin light chain resulted in a 50% increase in isometric tension which correlated with an increase in P-light chain phosphorylation from 0.10 to 0.80 mol of phosphate/mol of P-light chain. Addition of a phosphoprotein phosphatase reversed the isometric tension response and dephosphorylated P-light chain. At the higher Ca2+ concentration, P-light chain phosphorylation was found to have little effect on isometric tension. Fibers prepared and stored at -20 degrees C in a buffer containing MgATP, KF, and potassium phosphate incorporated 0.80 mol of phosphate/mol of P-light chain. Addition of phosphoprotein phosphatase to these fibers incubated at 0.6 microM Ca2+ caused a reduction in isometric tension and dephosphorylation of the P-light chain. There was no difference before and after phosphorylation of P-light chain in the normalized force-velocity relationship for fibers at the lower Ca2+ concentration, and the extrapolated maximum shortening velocity was 2.2 fiber lengths/s. Our results suggest that in vertebrate skeletal muscle, P-light chain phosphorylation increases the force level at submaximal Ca2+ concentrations, probably by affecting the interaction between the myosin cross-bridge and the thin filament.  相似文献   

5.
In using pharmacologic stimuli, force-velocity (FV) curves are usually obtained by the method of quick release (QR) and redevelopment of shortening at peak tetanic tension; the advantage of the method being that the active state is at maximum. However, the QR may itself reduce the intensity of the active state and result in reduced values of FV constants. We tested this by delineating FV curves in canine tracheal smooth muscle using both conventional afterloaded isotonic contractions (ALI), and redevelopment of shortening after QR methods. For both these studies a supramaximal tetanizing electrical stimulus was used. The analysis of 11 experiments revealed that the latter method resulted in statistically significant reductions of all FV constants except for Po (maximum isometric tetanic tension). The means and standard errors for the sets of constants for the ALI and QR, respectively, are as follows: Vmax (maximum velocity of shortening) = 0.275 lo (optimal muscle length)/s +/- 0.024 (SE), and 0.216 lo/s + 0.023; a (hyperbolic constant with units of force) = 294 g/cm2 +/- 35 and 236 g/cm2 +/- 32; b (hyperbolic constant with units of velocity) = 0.059 lo +/- 0.004 and 0.039 lo/s +/- 0.005; a/Po = 0.214 +/- 0.028 and 0.182 +/- 0.026; and Po = 1.362 kg/cm2 +/- 0.106 and 1.294 kg/cm2 +/- 0.097. These data clearly show that the quick-release method for measuring force-velocity relationships in canine smooth muscle results in significant underestimates of muscle shortening properties.  相似文献   

6.
Transgenic Drosophila are highly useful for structure-function studies of muscle proteins. However, our ability to mechanically analyze transgenically expressed mutant proteins in Drosophila muscles has been limited to the skinned indirect flight muscle preparation. We have developed a new muscle preparation using the Drosophila tergal depressor of the trochanter (TDT or jump) muscle that increases our experimental repertoire to include maximum shortening velocity (Vslack), force-velocity curves and steady-state power generation; experiments not possible using indirect flight muscle fibers. When transgenically expressing its wild-type myosin isoform (Tr-WT) the TDT is equivalent to a very fast vertebrate muscle. TDT has a Vslack equal to 6.1 ± 0.3 ML/s at 15°C, a steep tension-pCa curve, isometric tension of 37 ± 3 mN/mm2, and maximum power production at 26% of isometric tension. Transgenically expressing an embryonic myosin isoform in the TDT muscle increased isometric tension 1.4-fold, but decreased Vslack 50% resulting in no significant difference in maximum power production compared to Tr-WT. Drosophila expressing embryonic myosin jumped <50% as far as Tr-WT that, along with comparisons to frog jump muscle studies, suggests fast muscle shortening velocity is relatively more important than high tension generation for Drosophila jumping.  相似文献   

7.
The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body.  相似文献   

8.
The effects of ADP and phosphate on the contraction of muscle fibers.   总被引:47,自引:11,他引:36       下载免费PDF全文
The products of MgATP hydrolysis bind to the nucleotide site of myosin and thus may be expected to inhibit the contraction of muscle fibers. We measured the effects of phosphate and MgADP on the isometric tensions and isotonic contraction velocities of glycerinated rabbit psoas muscle at 10 degrees C. Addition of phosphate decreased isometric force but did not affect the maximum velocity of shortening. To characterize the effects of ADP on fiber contractions, force-velocity curves were measured for fibers bathed in media containing various concentrations of MgATP (1.5-4 mM) and various concentrations of MgADP (1-4 mM). As the [MgADP]/[MgATP] ratio in the fiber increases, the maximum velocity achieved by the fiber decreases while the isometric tension increases. The inhibition of fiber velocities and the potentiation of fiber tension by MgADP is not altered by the presence of 12 mM phosphate. The concentration of both MgADP and MgATP within the fiber was calculated from the diffusion coefficient for nucleotides within the fiber, and the rate of MgADP production within the fiber. Using the calculated values for the nucleotide concentration inside the fiber, observed values of the maximum contraction velocity could be described, within experimental accuracy, by a model in which MgADP competed with MgATP and inhibited fiber velocity with an effective Ki of 0.2-0.3 mM. The average MgADP level generated by the fiber ATPase activity within the fiber was approximately 0.9 mM. In fatigued fibers MgADP and phosphate levels are known to be elevated, and tension and the maximum velocity of contraction are depressed. The results obtained here suggest that levels of MgADP in fatigued fibers play no role in these decreases in function, but the elevation of both phosphate and H+ is sufficient to account for much of the decrease in tension.  相似文献   

9.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension.  相似文献   

10.
A broad survey of muscle unit properties in 14 muscles of the cat hind limb is presented which emphasizes some general features of unit properties in mammalian muscles. A more detailed analysis of muscle unit properties in three muscles of the posterior compartment of the lower leg is then presented using Burke's tetrapartite (FF, FI or F (Int.), FR, and S) unit classification scheme. Our data on the properties of motor units in cat tibialis posterior (TP) have been compared to those generated by Burke and colleagues on units in flexor digitorum longus (FDL) and medial gastrocnemius (MG). In all three muscles, twitch contraction time was distinctly slower for type S units and specific tension outputs were substantially greater for type FF units than for type S units. The innervation ratios of type FR units were slightly lower than for type S units but the specific tension of the FR units was closer to FF units than to type S units. The FF units controlled 70–74% of the cumulative force output of each muscles, indicating a substantial capacity for powerful rapid contractions of all three of these muscles despite their differences in “size,” action, and force generation. Distinctive features of the three muscles included differences in the unit types' force producing capabilities and in the relative representation of “nonfatigable” type FR and S units in each muscle. In particular, TP is endowed with some unusually powerful type FF units and a high percentage (42%) of type S units. In contrast, FDL has units that develop relatively little force and an unusually high representation (56%) of type FR units. The possible relationships between these muscle features and their presumed role in posture and locomotion is discussed.  相似文献   

11.
A comparison of fatigue as a loss of force with repeated contractions over time was performed in canine respiratory muscle by isometric (nonshortening) and isovelocity (shortening) contractions. In situ diaphragm muscle strips were attached to a linear ergometer and electrically stimulated (30 or 40 Hz) via the left phrenic nerve to produce either isometric (n = 12) or isovelocity (n = 12) contractions (1.5 s) from optimal muscle length (Lo = 8.8 cm). Similar velocities of shortening between isovelocity experiments [0.19 +/- 0.02 (SD) Lo/S] were produced by maximizing the mean power output (Wmax = 210 +/- 27 mW/cm2) that could be developed over 1.5 s when displacement was approximately 0.30 Lo. Initial peak isometric tension was 1.98 kg/cm2, whereas initial peak isovelocity tension was 1.84 kg/mc2 (P less than 0.01) or 93% of initial isometric tension. Fatigue trials of 5 min were conducted on muscles contracting at a constant duty cycle (0.43). At the end of the trials, peak isovelocity tension had fallen to 50% of initial isometric tension (P less than 0.01), whereas peak isometric tension had only fallen by 27%. These results indicate that muscle shortening during force production has a significant influence on diaphragm muscle fatigue. We conclude that the effects of shortening on fatigue must be considered in models of respiratory muscle function, because these muscles typically shorten during breathing.  相似文献   

12.
The goals of this study were to investigate adductor pollicis muscle (n = 7) force depression after maximal electrically stimulated and voluntarily activated isovelocity (19 and 306 degrees /s) shortening contractions and the effects of fatigue. After shortening contractions, redeveloped isometric force was significantly (P < 0.05) depressed relative to isometric force obtained without preceding shortening. For voluntarily and electrically stimulated contractions, relative force deficits respectively were (means +/- SE) 25.0 +/- 3.5 and 26.6 +/- 1.9% (19 degrees /s), 7.8 +/- 2.2 and 11.5 +/- 0.6% (306 degrees /s), and 23.9 +/- 4.4 and 31.6 +/- 4.7% (19 degrees /s fatigued). The relative force deficit was significantly smaller after fast compared with slow shortening contractions, whereas activation manner and fatigue did not significantly affect the deficit. It was concluded that in unfatigued and fatigued muscle the velocity-dependent relative force deficit was similar with maximal voluntary activation and electrical stimulation. These findings have important implications for experimental studies of force-velocity relationships. Moreover, if not accounted for in muscle models, they will contribute to differences observed between the predicted and the actually measured performance during in vivo locomotion.  相似文献   

13.
Threads of contractile proteins were formed via extrusion and their isometric tensions and isotonic contraction velocities were measured. We obtained reproducible data by using a new and sensitive tensiometer. The force-velocity curves of actomyosin threads were similar to those of muscle, with isometric tensions of the order of 10g/cm2 and maximum contraction velocites of the order of 10(-2) lengths/s. The data could be fitted by Hill's equation. Addition of tropomyosin and troponin to the threads increased isometric tension and maximum contraction velocity. Threads which contained troponin and tropomyosin required Ca++ for contraction and the dependence of their isometric tension on the level of free Ca++ was like that of muscle. The dependence of tension or of contraction velocity upon temperature or upon ionic strength is similar for actomyosin threads and muscle fibers. In contrast, the dependence of most parameters which are characteristic of the actomyosin interaction in solution (or suspension) upon these variables is not similar to the dependence of the muscle fiber parameters. The conclusion we have drawn from these results is that the mechanism of tension generation in the threads is similar to the mechanism that exists in muscle. Because the protein composition of the thread system can be manipulated readily and because the tensions and velocities of the threads can be related directly to the physiological parameters of muscle fibers, the threads provide a powerful method for studying contractile proteins.  相似文献   

14.
The force-velocity (F-V) relationships of canine gastrocnemius-plantaris muscles at optimal muscle length in situ were studied before and after 10 min of repetitive isometric or isotonic tetanic contractions induced by electrical stimulation of the sciatic nerve (200-ms trains, 50 impulses/s, 1 contraction/s). F-V relationships and maximal velocity of shortening (Vmax) were determined by curve fitting with the Hill equation. Mean Vmax before fatigue was 3.8 +/- 0.2 (SE) average fiber lengths/s; mean maximal isometric tension (Po) was 508 +/- 15 g/g. With a significant decrease of force development during isometric contractions (-27 +/- 4%, P < 0.01, n = 5), Vmax was unchanged. However, with repetitive isotonic contractions at a low load (P/Po = 0.25, n = 5), a significant decrease in Vmax was observed (-21 +/- 2%, P < 0.01), whereas Po was unchanged. Isotonic contractions at an intermediate load (P/Po = 0.5, n = 4) resulted in significant decreases in both Vmax (-26 +/- 6%, P < 0.05) and Po (-12 +/- 2%, P < 0.01). These results show that repeated contractions of canine skeletal muscle produce specific changes in the F-V relationship that are dependent on the type of contractions being performed and indicate that decreases in other contractile properties, such as velocity development and shortening, can occur independently of changes in isometric tension.  相似文献   

15.
We hypothesized that decrements in maximum power output (W(max)) of the rat diaphragm (Dia) muscle with repetitive activation are due to a disproportionate reduction in force (force fatigue) compared with a slowing of shortening velocity (velocity fatigue). Segments of midcostal Dia muscle were mounted in vitro (26 degrees C) and stimulated directly at 75 Hz in 400-ms-duration trains repeated each second (duty cycle = 0.4) for 120 s. A novel technique was used to monitor instantaneous reductions in maximum specific force (P(o)) and W(max) during fatigue. During each stimulus train, activation was isometric for the initial 360 ms during which P(o) was measured; the muscle was then allowed to shorten at a constant velocity (30% V(max)) for the final 40 ms, and W(max) was determined. Compared with initial values, after 120 s of repetitive activation, P(o) and W(max) decreased by 75 and 73%, respectively. Maximum shortening velocity was measured in two ways: by extrapolation of the force-velocity relationship (V(max)) and using the slack test [maximum unloaded shortening velocity (V(o))]. After 120 s of repetitive activation, V(max) slowed by 44%, whereas V(o) slowed by 22%. Thus the decrease in W(max) with repetitive activation was dominated by force fatigue, with velocity fatigue playing a secondary role. On the basis of a greater slowing of V(max) vs. V(o), we also conclude that force and power fatigue cannot be attributed simply to the total inactivation of the most fatigable fiber types.  相似文献   

16.
Summary Previous works from our laboratory have revealed that food restriction (FR) promotes discrete myocardial dysfunction in young rats. We examined the effects of FR on cardiac function, in vivo and in vitro, and ultrastructural changes in the heart of middle-aged rats. Twelve-month-old Wistar-Kyoto rats were fed a control (C) or restricted diet (daily intake reduced to 50% of the control group) for 90 days. Cardiac performance was studied by echocardiogram and in isolated left ventricular (LV) papillary muscle by isometric contraction in basal condition, after calcium chloride (5.2 mM) and beta-adrenergic stimulation with isoproterenol (10−6 M). FR did not change left ventricular function, but increased time to peak tension, and decreased maximum rate of papillary muscle tension development. Inotropic maneuvers promoted similar effects in both groups. Ultrastructural alterations were seen in most FR rat muscle fibers and included, absence and/or disorganization of myofilaments and Z line, hyper-contracted myofibrils, polymorphic and swollen mitochondria with disorganized cristae, and a great quantity of collagen fibrils. In conclusion, cardiac muscle sensitivity to isoproterenol and elevation of extracellular calcium concentration is preserved in middle-aged FR rats. The intrinsic muscle performance depression might be related to morphological damage.  相似文献   

17.
Increased total peripheral resistance is the cardinal haemodynamic disorder in essential hypertension. This could be secondary to alterations in the mechanical properties of vascular smooth muscle. Adequate study has not been made of the force-velocity (F-V) relationship in hypertensive arterial smooth muscle. Increased shortening in arterial smooth muscle would result in greater narrowing of arteries. The objectives of this investigation were to see if there is (i) increased shortening or increased maximum change in muscle length (delta Lmax where L stands for muscle length), (ii) an increased maximum velocity of shortening (Vmax) measured in l omicron per second where l omicron is the optimal muscle length for tension development, and (iii) a difference in maximum isometric tension (P omicron) developed in spontaneously hypertensive rat (SHR; N = 6) compared with normotensive Wistar Kyoto rat (WKY;N = 5) caudal artery strips. An electromagnetic muscle lever was employed in recording force-velocity data. Analysis of these data revealed the following: (a) the SHR mean P omicron of 6.21 +/- 1.01 N/cm2 was not different from the mean WKY P omicron of 6.97 +/- 1.64 N/cm2 (p greater than 0.05); (b) the SHR preparations showed greater shortening for all loads imposed; (c) the SHR Vmax of 0.016 l omicron/s was greater than the WKY Vmax of 0.013 l omicron/s (p less than 0.05). This study provides evidence that while hypertensive arterial smooth muscle is not able to produce more force than normotensive arterial smooth muscle, it is capable of faster and greater shortening. The latter could result in increased narrowing of hypertensive arteries and increased blood pressure.  相似文献   

18.
Immunocytochemical characteristics of myosin have been demonstrated directly in normal and cross-reinnervated skeletal muscle fibers whose physiological properties have been defined. Fibers belonging to individual motor units were identified by the glycogen-depletion method, which permits correlation of cytochemical and physiological data on the same fibers. The normal flexor digitorum longus (FDL) of the cat is composed primarily of fast-twitch motor units having muscle fibers with high myosin ATPase activity. These fibers reacted with antibodies specific for the two light chains characteristic of fast myosin, but not with antibodies against slow myosin. Two categories of fast fibers, corresponding to two physiological motor unit types (FF and FR), differed in their immunochemical response, from which it can be concluded that their myosins are distinctive. The soleus (SOL) consists almost entirely of slow-twitch motor units having muscle fibers with low myosin ATPase activity. These fibers reacted with antibodies against slow myosin, but not with antibodies specific for fast myosin. When the FDL muscle was cross-reinnervated by the SOL nerve, twitch contraction times were slowed about twofold, and motor units resembled SOL units in a number of physiological properties. The corresponding muscle fibers had low ATPase activity, and they reacted with antibodies against slow myosin only. The myosin of individual cross-reinnervated FDL muscle units was therefore transformed, apparently completely, to a slow type. In contrast, cross-reinnervation of the SOL muscle by FDL motoneurons did not effect a complete converse transformation. Although cross-reinnervated SOL motor units had faster than normal twitch contraction times (about twofold), other physiological properties characteristic of type S motor units were unchanged. Despite the change in contraction times, cross-reinnervated SOL muscle fibers exhibited no change in ATPase activity. They also continued to react with antibodies against slow myosin, but in contrast to the normal SOL, they now showed a positive response to an antibody specific for one of the light chains of fast myosin. The myosins of both fast and slow muscles were thus converted by cross-reinnervation, but in the SOL, the newly synthesized myosin was not equivalent to that normally present in either the FDL or SOL. This suggests that, in the SOL, alteration of the nerve supply and the associated dynamic activity pattern are not sufficient to completely respecify the type of myosin expressed.  相似文献   

19.
Contractile properties of the shortening rat diaphragm in vitro   总被引:1,自引:0,他引:1  
Diaphragmatic fatigue has been defined in terms of the failure of the muscle to continue to generate a given level of tension. Appropriate shortening of the diaphragm is, however, just as important for adequate ventilation. In this study we have examined in vitro the contractile properties of the rat diaphragm under afterloaded isotonic conditions and the effect of fatigue on the ability of the diaphragm to shorten. Shortening of the muscle strips was found to depend on size of afterload, frequency of stimulation, duration of stimulation, and initial length of the muscle. The afterloaded isotonic length-tension relationship coincided with the relationship between length and active isometric tension only for relatively small afterloads. Fatigue of the muscle strips, induced by isometric or afterloaded isotonic contractions, was associated with a decline in the extent of shortening as well as a decrease in active isometric tension. Ability to shorten and ability to develop isometric tension did not decrease to the same extent under all conditions. We conclude that active shortening, as well as active isometric tension, is decreased by muscular fatigue and that changes in these properties can be different depending on experimental conditions. The results suggest that the definition of diaphragmatic fatigue should be expanded to include the ability of the muscle to shorten by an appropriate amount. The results also suggest that measurement of isometric performance may not provide a complete estimate of the overall performance of the fatigued diaphragm.  相似文献   

20.
Chemomechanical transduction was studied in single fibers isolated from human skeletal muscle containing different myosin isoforms. Permeabilized fibers were activated by laser-pulse photolytic release of 1.5 mM ATP from p(3)-1-(2-nitrophenyl)ethylester of ATP. The ATP hydrolysis rate in the muscle fibers was determined with a fluorescently labeled phosphate-binding protein. The effects of varying load and shortening velocity during contraction were investigated. The myosin isoform composition was determined in each fiber by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. At 12 degrees C large variations (three- to fourfold) were found between slow and fast (2A and 2A-2B) fibers in their maximum shortening velocity, peak power output, velocity at which peak power is produced, isometric ATPase activity, and tension cost. Isometric tension was similar in all fiber groups. The ATP consumption rate increased during shortening in proportion to shortening velocity. At 12 degrees C the maximum efficiency was similar (0.21-0.27) for all fiber types and was reached at a higher speed of shortening for the faster fibers. In all fibers, peak efficiency increased to approximately 0.4 when the temperature was raised from 12 degrees C to 20 degrees C. The results were simulated with a kinetic scheme describing the ATPase cycle, in which the rate constant controlling ADP release is sensitive to the load on the muscle. The main difference between slow and fast fibers was reproduced by increasing the rate constant for the hydrolysis step, which was rate limiting at low loads. Simulation of the effect of increasing temperature required an increase in the force per cross-bridge and an acceleration of the rate constants in the reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号