首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently reported (Ransn?s, L.A., and Insel, P.A. (1988) J. Biol. Chem. 263, 9482-9485) development of antipeptide antibodies to the alpha s protein of the stimulatory guanine nucleotide binding regulatory protein, Gs, and use of one of these antibodies, GS-1, to quantitate Gs levels in S49 lymphoma cell membranes. Another of these antibodies, termed GS-2, appears to detect only dissociated alpha s, but not the heterotrimer alpha s beta gamma. Using a competitive enzyme-linked immunosorbent assay, we have found that the guanine nucleotides GTP and guanosine 5'-O-(thiotriphosphate) (GTP gamma S) (but not GDP) and the beta-adrenergic receptor agonist isoproterenol activate Gs in native S49 cell membrane by subunit dissociation. Evidence for this includes detection of dissociated alpha s in membrane extracts and release of alpha s from S49 cell membranes treated with GTP gamma S or isoproterenol. Moreover, the estimates of apparent stoichiometry for this dissociation indicate that each beta-adrenergic receptor is able to activate greater than or equal to 100 molecules of Gs in native membranes. Thus, receptor-mediated dissociation of Gs is likely to be the major site of amplification of signal transduction by agonists active at hormone receptors that link to Gs.  相似文献   

2.
T Asano  S E Pedersen  C W Scott  E M Ross 《Biochemistry》1984,23(23):5460-5467
The stimulatory GTP-binding protein (Gs) of adenylate cyclase, purified from rabbit liver, and beta-adrenergic receptors, partially purified 1000-4000-fold from turkey erythrocyte plasma membranes, were coreconstituted into unilamellar phospholipid vesicles. The molar ratio of Gs to receptors in the vesicles varied from 3 to 10 in different preparations, as measured by guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) binding to Gs and [125I]iodocyanopindolol binding to receptors. Activation of reconstituted Gs by GTP gamma S was stimulated up to 10-fold by the addition of the beta-adrenergic agonist (-)-isoproterenol. Activation was assayed functionally by reconstitution with the catalytic unit of adenylate cyclase. Because of the relative purity of this preparation, the quasi-irreversible binding of [35S]GTP gamma S could also be measured in the vesicles and was shown to parallel the functional activation of Gs under all conditions. Most of the assayable Gs in the vesicles could interact with the receptors and undergo agonist-stimulated activation. Agonist-stimulated activation and [35S]GTP gamma S binding were complete in less than 3 min, even under suboptimal conditions, and could go to completion in less than 20 s under maximal stimulation. Agonist-stimulated binding did not require appreciable free Mg2+ (less than 0.1 mM). Activation in the absence of agonist was stimulated by free Mg2+, but maximal activation took up to 10 min in the presence of 50 mM MgCl2. Reconstitution increased the stability of Gs to thermal denaturation. The addition of beta-adrenergic agonist further stabilized Gs, presumably by the formation of a stable agonist-receptor-Gs complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity   总被引:14,自引:0,他引:14  
beta-Adrenergic receptors were partially purified from turkey erythrocyte membranes by alprenolol-agarose chromatography to 0.25-2 nmol/mg of protein, and the stimulatory guanosine 5'-triphosphate (GTP) binding protein of adenylate cyclase (Gs) was purified from rabbit liver. These proteins were reconstituted into phospholipid vesicles by addition of phospholipids and removal of detergent by gel filtration. This preparation hydrolyzes GTP to guanosine 5'-diphosphate (GDP) plus inorganic phosphate (Pi) in response to beta-adrenergic agonists. The initial rate of isoproterenol-stimulated hydrolysis is approximately 1 mol of GTP hydrolyzed min-1 X mol-1 of Gs. This low rate may be limited by the hormone-stimulated binding of substrate, since it is roughly equal to the rate of binding of the GTP analogue guanosine 5'-O-(3-[35S] thiotriphosphate) [( 35S]GTP gamma S) to Gs in the vesicles. Activity in the absence of agonist, or in the presence of agonist plus a beta-adrenergic antagonist, is 8-25% of the hormone-stimulated activity. Guanosinetriphosphatase (GTPase) is not saturated at 10 microM GTP, and the response to GTP is formally consistent either with the existence of multiple Km's or of a separate stimulatory site for GTP. The GTPase activity of Gs in vesicles is also stimulated by 50 mM MgCl2 in the presence or absence of receptor. Significant GTPase activity is not observed with Lubrol-solubilized Gs, although [35S]-GTP gamma S binding is increased by Lubrol solubilization.  相似文献   

4.
D C May  E M Ross 《Biochemistry》1988,27(13):4888-4893
When reconstituted phospholipid vesicles that contain purified beta-adrenergic receptors and the GTP-binding regulatory protein Gs were preincubated with agonist before the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), the typical receptor-stimulated GTP gamma S binding reaction was preceded by an even more rapid burst of GTP gamma S binding. This burst was studied in detail at 0 degree C. The rate of the burst was second order in nucleotide and Gs [k assoc approximately 2 X 10(7) (M.min)-1], consistent with diffusion-controlled binding. The magnitude of the burst was always less than the number of receptors present and was roughly linear with receptor number when similarly prepared vesicles were compared. There was no obvious quantitative correlation between the burst and the amount of Gs. The species that gave rise to the burst formed with t1/2 approximately 15 min at 0 degree C in the presence of agonist and decayed by approximately 3 min upon addition of antagonist or detergent. Formation and decay of this species was much faster at at 30 degrees C. The data suggest that a complex of agonist, receptor, and Gs that is primed for the rapid binding of guanine nucleotide can form and be analyzed in reconstituted vesicles.  相似文献   

5.
We developed a novel method to quantitatively measure GTP gamma S binding to specific G proteins in crude membranes using G-protein antibodies. The basic strategy was that the materials were initially incubated with [35S]GTP gamma S at 37 degrees C. After 4 degrees C incubation in the wells of an ELISA plate precoated with G-protein antibodies, the radioactivity of each well was counted. This method, using an anti-Gi antiserum and an anti-Gs antiserum, quantitatively and specifically detected the binding of GTP gamma S to purified Gi2 and Gs. In S49 cell membranes, GTP gamma S binding to immunoreactive Gs was observed in a time-dependent manner that obeyed first-order kinetics, and the rate constant was stimulated approximately twofold in response to isoproterenol. The effect of isoproterenol was not observed in unc mutant membranes. The present method thus makes it possible to quantitatively measure GTP gamma S binding to specific G proteins in cell membranes.  相似文献   

6.
Treatment of beta-adrenergic receptor with dithiothreitol (DTT) or other thiol compounds caused its functional activation in the presence or absence of agonist ligands. Such activation was observed in reconstituted unilamellar phospholipid vesicles that contained beta-adrenergic receptors, purified to greater than or equal to 95% homogeneity from turkey erythrocyte plasma membranes, and the stimulatory GTP-binding protein of the adenylate cyclase system (Gs) purified from rabbit liver. Incubation of the vesicles with 2-10 mM DTT at 0 degrees C for 1 h increased the rate (4-5-fold) and the extent (3-4-fold) of activation of Gs by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding, an effect about equivalent to the addition of beta-adrenergic agonists. Treatment with DTT also markedly potentiated the ability of agonists to stimulate GTP gamma S binding, increasing the initial rate about 10-fold. DTT treatment was as effective as agonist in stimulating GTPase activity, and maximal stimulation was obtained when DTT-treated vesicles were assayed in the presence of agonist. Other thiol compounds produced effects similar to those of DTT but were at least 10-fold less potent. Stimulation of GTP gamma S binding or GTPase activity required active receptor, and treatment of the receptor with DTT prior to reconstitution also increased its efficacy. There was no effect of DTT on Gs alone. Thus, the site of action of DTT appears to be on the beta-adrenergic receptor itself, and the reduction of disulfides and the binding of agonist act synergistically to activate the receptor. DTT treatment made the receptor more labile to thermal denaturation. Inclusion of cholesterol or cholesteryl-hemisuccinate (5-25%) in the vesicles protected the reduced receptor against such denaturation and enhanced its recovery during reconstitution. No effect of cholesterol or cholesteryl-hemisuccinate was observed on the stability of the nonreduced receptor, which was comparable to that observed in native membranes.  相似文献   

7.
A new method was developed to follow the rate of activation of adenylate cyclase in rat brain membranes by rapid freezing and N-ethylmaleimide treatment at 0 degrees C. This method was used to investigate the relationship between the rate of activation of adenylate cyclase by p(NH)ppG and GTP gamma S and their apparent affinities. These studies established the following. 1) The kinetics of activation by p(NH)ppG and GTP gamma S were indistinguishable although the apparent affinity of p(NH)ppG was 20-fold lower than the affinity of GTP gamma S. Activation was first order, kobs varying approximately 1.5-fold (average t 1/2 = 3.5 min, 30 degrees C) between 20-90% occupancy by either guanine nucleotide. 2) Final levels of activity were strictly dependent on the concentration of the nucleotides in a saturable manner. 3) Mg2+ increased the apparent affinity of either guanine nucleotide by 10-20-fold between 0.1 microM and 3 mM free Mg2+ in the presence of 2 mM EDTA but did not enhance the rate or maximal extent of activation. 4) The effects of Mg2+ were expressed through two independent classes of sites with affinities in the nanomolar and micromolar range. 5) A Mg2+ X guanine nucleotide complex was not the substrate for activation. The affinity of Mg2+ for nucleotides was determined as 6.25 mM GTP gamma S, 0.930 mM GTP, 0.156 mM p(NH)ppG. 6) Full activation by p(NH)ppG was completely reversible but activation by GTP gamma S was only partially reversible. These results suggest that: activation of adenylate cyclase in native membranes does not require Mg2+ or irreversible binding of the guanine nucleotide and there are two independent pathways for formation of active adenylate cyclase. A minimal mechanism for activation is discussed in light of current models.  相似文献   

8.
D R Brandt  E M Ross 《Biochemistry》1986,25(22):7036-7041
The effects of Al3+ and F- on the catecholamine-stimulated GTPase cycle were studied by using reconstituted phospholipid vesicles that contained purified beta-adrenergic receptor and the stimulatory GTP-binding protein of the adenylate cyclase system, Gs. Al3+/F- activated reconstituted Gs to levels previously reported for detergent-solubilized, purified Gs, although both activation and deactivation were faster in the reconstituted preparation. Under these conditions, Al3+/F- did not inhibit by more than 15% the beta-adrenergic agonist-stimulated GTPase activity of the vesicles nor did it significantly inhibit the rates of GTP binding, GTP hydrolysis, or GDP release. When Mg2+ (50 mM) was used instead of agonist to promote GTP hydrolysis in the receptor-Gs vesicles, Al3+/F- was found to inhibit GTP gamma S binding, GDP release, and steady-state GTPase activity to unstimulated levels. These data can be interpreted as indicating that the receptor catalyzes nucleotide exchange by Gs faster or more efficiently than does Mg2+.  相似文献   

9.
The effects of neomycin, fluoride and the non-hydrolysable guanine nucleotide analogue GTP gamma S on the kinetics of cell-free activation of NADPH oxidase in membranes of resting human neutrophils were investigated. Arachidonate-mediated activation of the oxidase followed a first-order reaction course (kobs. = 0.39 min-1 at 26 degrees C). In the presence of NaF during the activation process, activity was enhanced while the activation rate was slightly reduced (kobs. = 0.25 min-1 at 26 degrees C). Neomycin blocked activation (half-maximal effect at 25 microM) without affecting rates of superoxide release by preactivated enzyme in vitro or in vivo. In spite of reduced specific activity neither the first-order rate constant of the activation nor the Km of the oxidase were altered by neomycin. Oxidase activated in the presence of GTP gamma S exhibited increased specific activity and unchanged Km; the course of the reaction deviated from first-order kinetics. Kinetic evidence is presented for two separate activation reactions: a GTP gamma S-independent, basal, first-order process and a GTP gamma S-dependent sigmoid activation process. The results are compatible with the existence in neutrophil membranes of two separate pools of dormant oxidase. An alternative scheme of the formation of two active forms of NADPH oxidase is also presented.  相似文献   

10.
The GTPase activity of the stimulatory guanine nucleotide-binding regulatory protein (Gs) of hormone-sensitive adenylate cyclase was investigated using purified rabbit hepatic Gs and either [alpha-32P]- or [gamma-32P] GTP as substrate. The binding of [35S]guanosine 5'-O-(thiotriphosphate) (GTP gamma S) was used to quantitate the total concentration of Gs. 1) GTPase activity was a saturable function of the concentration of GTP, with Km = 0.3 microM. MgCl2 monotonically increased the activity. The maximum observed turnover number was about 1.5 min-1. 2) During steady-state hydrolysis, 20-40% of total Gs could be trapped as a Gs-GDP complex and 1-2% could be trapped as Gs-GTP. The hydrolysis of Gs-GTP to Gs-GDP occurred with t 1/2 less than or equal to 5 s at 30 degrees C and t 1/2 approximately 1 min at 0 degrees C. Hydrolysis of Gs-GTP was inhibited by 1.0 mM EDTA in the absence of added Mg2+. 3) The rate of formation of Gs-GDP and the initial GTPase rate varied in parallel as functions of the concentrations of either GTP or MgCl2 (above 0.1 mM Mg2+). The ratio of the rate of accumulation of Gs-GDP to the GTPase rate was constant at 0.3-0.4. 4) The rate of dissociation of assayable Gs-GDP was biphasic. The initial phase accounted for 60-80% of total assayable Gs-GDP and was characterized by a t 1/2 of about 1 min. 5) Lubrol 12A9 potently inhibited the GTPase reaction and the dissociation of Gs-GDP in parallel, and inhibition of product release may account for the inhibition of steady-state hydrolysis. 6) The beta and gamma subunits of Gs markedly inhibited the dissociation of GDP from Gs in contrast to their ability to stimulate the dissociation of GTP gamma S. 7) GDP, GTP gamma S, and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) competitively inhibited the accumulation of Gs-GDP. GTP gamma S and Gpp(NH)p inhibited the GTPase reaction noncompetitively, GDP displayed mixed inhibition, and Pi did not inhibit. These data are interpretable in terms of the coexistence of two specific mechanistic pathways for the overall GTPase reaction.  相似文献   

11.
Cloning of complementary DNAs that encode either of two forms of the alpha subunit of the guanine nucleotide-binding regulatory protein (Gs) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M.P., Casey, P.J., and Gilman, A.G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of Gs alpha (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13.min-1 and 0.34.min-1 at 20 degrees C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant Gs alpha have essentially the same kcat for GTP hydrolysis, approximately 4.min-1. Recombinant Gs alpha interacts functionally with G protein beta gamma subunits and with beta-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of beta gamma subunits. Both forms of recombinant Gs alpha can reconstitute GTP-, isoproterenol + GTP-, guanosine 5'-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for Gs purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant Gs alpha for adenylyl cyclase is 5-10 times lower than that of liver Gs under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that Gs alpha, when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.  相似文献   

12.
We have previously shown that the beta-adrenergic receptor (beta-AR) stimulates activity of the ubiquitous Na-H exchanger (NHE-1) independently of changes in cAMP accumulation and independently of a cholera toxin-sensitive stimulatory GTP-binding protein (Gs). To further investigate the potential role of a GTP-binding protein in coupling the beta-AR to NHE-1, we have used a recently available nonhydrolyzable GTP analog, "caged" guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), to study time-dependent effects of GTP on NHE-1 in intact cells. By monitoring intracellular pH (pHi) in cells loaded with the fluorescent pH-sensitive dye, 2,7-biscarboxyethyl-5(6)-carboxyfluorescein, we determined NHE-1 activity in primary cultures of canine enteric endocrine cells, which express an endogenous beta-AR, and in mouse L cells stably transfected with either the wild type hamster beta 2-AR or a mutant construct of the hamster beta 2-AR containing a deletion in amino acid residues 222-229. This D(222-229)beta 2-AR is functionally uncoupled from Gs and adenylylcyclase. In all three cell types, NaF and GTP gamma S induced an increase in activity of the exchanger, determined by assessing the rate of pHi recovery from an acute intracellular acid load (dpHi/dt). This increase in pHi recovery was dependent on extracellular Na+ and sensitive to the amiloride analog ethylisopropylamiloride. GTP gamma S, but not NaF, also increased beta-adrenergic stimulation of resting NHE-1 activity. The alkalinization in response to isoproterenol was reversed by propranolol in the absence, but not the presence, of GTP gamma S and was completely blocked by GDP beta S. The ability of guanine nucleotides to regulate beta-adrenergic activation of NHE-1 in cells expressing the mutant D(222-229)beta 2-AR suggests that functional coupling of the beta-AR to NHE-1 may be mediated by a GTP-binding protein other than Gs.  相似文献   

13.
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to the Km for G protein GTPase activity X G beta gamma increases the rate of dissociation of GTP gamma S from G alpha X GTP gamma S or G alpha X GTP gamma S X Mg2+ at low concentrations of Mg2+. When the concentration of Mg2+ exceeds 1 mM, G beta gamma dissociates from G beta gamma X G alpha X GTP gamma S X Mg2+. Compared with the dramatic effect of Mg2+ on binding of GTP gamma S to G alpha, the metal has relatively little effect on the binding of GDP. However, G beta gamma increases the affinity of G alpha for GDP by more than 100-fold. High concentrations of Mg2+ promote the dissociation of GDP from G beta gamma X G alpha X GDP, apparently without causing subunit dissociation. The steady-state rate of GTP hydrolysis is strictly correlated with the rate of dissociation of GDP from G alpha under all conditions examined. Thus, there are at least two sites for interaction of Mg2+ with G protein-nucleotide complexes. Furthermore, binding of G beta gamma and GTP gamma S to G alpha is negatively cooperative, while the binding interaction between G beta gamma and GDP is strongly positive.  相似文献   

14.
Adenylylcyclase cannot be activated by hormones or guanine nucleotide analogs in membranes from cells that express the G226A mutant form Gs alpha instead of the wild-type protein. The mutant Gs alpha protein appears incapable of undergoing the conformational change necessary for guanine nucleotide-induced dissociation of the G protein alpha subunit from the beta gamma subunit complex (Miller, R.T., Masters, S.B., Sullivan, K.A., Beiderman, B., and Bourne, H.R. (1988) Nature 334, 712-715). G226A Gs alpha was synthesized in Escherichia coli, purified, and characterized. Examination of the kinetics of dissociation of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) suggests that G226A Gs alpha is incapable of assuming the conformation necessary for high affinity binding of Mg2+ to the alpha subunit-GTP gamma S complex. Associated changes include the failure of Mg2+ and GTP gamma S to confer resistance to tryptic proteolysis upon the protein, to enhance intrinsic tryptophan fluorescence, or to cause dissociation of alpha from beta gamma. However, the GTPase activity of the mutant protein is near normal (at high Mg2+ concentrations), and the protein is capable of activating adenylylcyclase. A similar defect is present in G49V Gs alpha. Failure of G protein subunit dissociation appears to be the explanation for the phenotypic properties of cells that express G226A Gs alpha, and this mutation thus highlights the crucial nature of this reaction as a component of G protein action.  相似文献   

15.
P2-purinergic stimulation of the L-type Ca current induced by the external application of 100 microM ATP gamma S was investigated in rat ventricular cardiomyocytes using the whole-cell patch-clamp technique. The purinergic-induced increase in ICa was slow and monophasic and reached a steady state within 3 min. In contrast to beta-adrenergic stimulation, after a brief agonist application the current did not continue to increase on washout; recovery started immediately after agonist removal. The P2-purinergic increase in ICa was significantly less in the presence of GDP beta S, but it occurred much faster and was twice as large when a low dose of GTP gamma S (100 microM) was added to a GTP-containing internal medium. This suggests that the ICa increase was mediated by a G protein. Based on electrophoretic mobility and susceptibility to cholera toxin and anti-G alpha s serum, it is proposed that the G protein involved during purinergic-induced ICa stimulation is an isoform of Gs not coupled to the adenylyl cyclase, since the cyclic AMP level was unaffected. High intracellular GTP gamma S (1 mM) maximally activated ICa so that neither beta-adrenergic nor P2-purinergic agonists further increased ICa. In the absence of GTP and an ATP-regenerating system, GTP gamma S was much more potent in increasing basal ICa and supporting purinergic stimulation. This indicates that a nucleoside diphosphate kinase activity might replenish endogenous GTP; GTP exchange with GTP gamma S on the G protein was promoted by the P2-purinergic stimulation and led to a reversible and reproducible increase in ICa. In the presence of 3 mM internal ATP gamma S, the P2-purinergic stimulation was also reversible and reproducible. Moreover, under these conditions (ATP gamma S or GTP gamma S) the increase in ICa was not maintained during prolonged agonist application. Such an inhibition occurred slowly and irreversibly; it might be related to the threefold increase in cyclic GMP. In conclusion, we propose that extracellular ATP induces both a stimulatory and an inhibitory effect on ICa, probably mediated by subtypes of P2-purinergic receptors. An isoform of the Gs protein is likely to mediate the stimulation.  相似文献   

16.
H S Lopez 《Neuron》1992,8(4):725-736
The inhibition of the voltage-dependent, K+ M-current (IM) following receptor-independent G protein activation with controlled intracellular perfusion of nonhydrolyzable GTP analogs had an exponential time course, with rates hyperbolically dependent on GTP analog concentration, and a limiting value of 0.53 min-1. The inhibitory agonist muscarine caused a concentration-dependent acceleration of the rate of nucleotide-induced inhibition, with a plateau of about 20 min-1 and an exponential time course. In neurons not treated with nucleotide analogs the IM recovery rate following agonist removal was 3-7 min-1. It is proposed that the overall kinetics of the transduction pathway for IM modulation is governed by the agonist-dependent kinetics of nucleotide interaction with G proteins. A simple model of IM modulation based on G proteins' kinetics has been developed. These data suggest a possible cellular process responsible for the time course of slow synaptic potentials caused by IM inhibition in sympathetic neurons.  相似文献   

17.
beta-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The beta-adrenergic agonist isoproterenol (10 microM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (approximately 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), isoproterenol increased cAMP formation to the same extent as that observed with AlF-4. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (approximately 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the 'turn-off' step for the adenylyl cyclase activation seen following beta-adrenergic stimulation of rat parotid glands.  相似文献   

18.
The native pertussis toxin sensitive GTP-binding proteins (Gi proteins) were individually resolved, and their guanine nucleotide binding and release properties were studied. Gi2 and Gi3, the two major GTP-binding proteins of human erythrocytes, were purified to apparent homogeneity by fast protein liquid chromatography. Gi1 was purified from bovine brain. The three proteins bound 0.6-0.85 mol of guanosine 5'-O-(thio-triphosphate (GTP gamma S)/mol of protein with similar affinities (KD(app) = 50-100 nM). The rate of [35S]GTP gamma S binding to Gi2 was 5-8-fold faster than to Gi1 or Gi3 at 2 mm Mg2+. There were no observable differences in the binding characteristics between bovine brain Gi1 and human erythrocyte Gi3. At 50 mM Mg2+, all three Gi proteins exhibited fast binding, although Gi1 and Gi3 were marginally slower than Gi2. All three Gi proteins exhibited different rates of [32P]GDP release at 2 mM Mg2+. GDP release from Gi2 was severalfold faster than that from Gi1 or Gi3. GDP release rates from Gi1 and Gi3 were similar, although Gi3 was somewhat (60-80%) faster than Gi1. These data indicate that rates of GDP release and GTP binding may be independently regulated for these three proteins and that the relative proportions of Gi2/Gi1 or Gi2/Gi3 will be a crucial factor in determining the kinetics of signal transduction through Gi-coupled effectors.  相似文献   

19.
The effect of the glucagon receptor on the activation of the stimulatory GTP-binding protein of adenylyl cyclase (Gs) in the native rat liver membrane environment was studied. The activated state of Gs was assessed by its ability to reconstitute the cyc- S49 cell membrane adenylyl cyclase. The Gs protein was activated by saturating concentrations of guanosine 5'-thiotriphosphate (GTP gamma S) or guanyl-5'-yl imidodiphosphate in a hormone-dependent manner at 0.4 mM Mg2+ in native membranes or in membranes that had been treated with 1 mM N-ethylmaleimide to eliminate the catalytic activity of adenylyl cyclase. At 50 mM Mg2+, Gs was fully activated by GTP gamma S in the absence of hormone. The unactivated Gs protein migrates around 4 S, whereas activated Gs migrates around 2 S on sucrose density gradients. When pure Gs is analyzed on sucrose density gradients, it is found that the unactivated protein migrates at 4.1 S. Gs was activated by saturating concentrations of GTP gamma S and Mg2+, and the alpha subunit of Gs was chromatographically purified. The resolved alpha subunit of Gs that is capable of stimulating the cyc- adenylyl cyclase migrates at 2.1 S. From these data, we conclude that activation of Gs results in the dissociation of this protein in the membrane environment and that the hormone-occupied receptor promotes this dissociation process under conditions where Mg2+ ions are limiting.  相似文献   

20.
The involvement of G regulatory proteins in muscarinic receptor signal transduction was examined in electrically permeabilized rat submandibular acinar cells. The guanine nucleotide analog, GTP gamma S, caused the dose dependent hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to release IP3. This response was insensitive to pertussis toxin treatment and was duplicated by NaF but not by GDP beta S. Enhanced IP3 synthesis was observed with a combination of GTP gamma S and carbachol. Exogenous IP3, as well as carbachol and GTP gamma S, provoked the release of sequestered 45Ca2+ from non-mitochondrial stores. In intact cells, carbachol significantly reduced the level of cyclic AMP induced by the beta-adrenergic agonist, isoproterenol, to 69% of its normal value. Pertussis toxin abolished this inhibitory action of carbachol on cyclic nucleotide levels. These results suggest that muscarinic receptors are coupled to two separate G regulatory proteins in submandibular mucous acini-the pertussis toxin-insensitive Gp of the phosphoinositide transduction pathway associated with elevated cytosolic calcium levels, and the pertussis toxin-sensitive Gi inhibitory protein of the adenylate cyclase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号