首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Neutrophils contain a 21-kDa phosphoprotein that undergoes rapid dephosphorylation upon stimulation of these cells with the chemoattractant N-fMet-Leu-Phe (fMLP), activators of protein kinase C [e.g., 4β-phorbol 12-myristate 13-acetate (PMA)] or the calcium ionophore A23187. This phosphoprotein was identified as the non-muscle form of cofilin by peptide sequencing and immunoblotting with specific antibodies. Evidence is presented that in neutrophils cofilin is regulated by a continual cycle of phosphorylation and dephosphorylation, and that the phosphatase undergoes activation during cell stimulation. Experiments with a wide variety of antagonists further suggested that the protein kinase that participates in these reactions may be a novel enzyme. The kinetics of cofilin dephosphorylation in neutrophils stimulated with fMLP or PMA were very similar to those observed for superoxide (O2 ) release. Immunofluorescent studies revealed that cofilin was present thouroughout the cytosol of resting neutrophils and underwent rapid translocation to the F-actin-rich, ruffled membranes of stimulated cells. Cytochemical analysis further revealed that the ruffled membranes also contained large amounts of hydrogen peroxide (H2O2), a product of the O2 /H2O2-generating activity of stimulated neutrophils (NADPH oxidase). Cofilin is therefore well placed to participate in the continual polymerization and depolymerization of F-actin that is thought to give rise to the oscillatory pattern of H2O2 production observed under certain conditions. Accepted: 22 April 1997  相似文献   

2.
It is postulated that the burst of oxygen consumption and H2O2 formation following phagocytosis by polymorphonuclear leukocytes is due to the action of an oxidase located in the plasma membrane. The cyanide-resistant oxygen consumption of resting polymorphonuclear leukocytes was also found to be stimulated by 2,4-dichlorophenol with H2O2 being the sole product formed. NADH and NADPH added to the leukocytes greatly enhanced the oxygen consumption and were oxidized in the process without penetrating the leukocytes. Mn2+ stimulated this oxidase activity. The apparent Km values for added NADH and NADPH were 50 and 40 μm, respectively, with a V of 300 nmol/mg protein/min. A stoichiometry of 1 mol H2O2 formed per mol of NAD(P)H was found. Whilst the oxidase is similar to the oxidase properties of a peroxidase, myeloperoxidase is not responsible for the activity.  相似文献   

3.
A class of ω-aminoalkyl glycosides previously found to antagonize insulin's action on glucose oxidation in fat cells and to stimulate glucose oxidation in insulin's absence is now shown to mimic insulin also on the conversion of glucose to free fatty acids and to glycerol and glycerides. These glycosides also act like insulin by inhibiting hormone- and cholera toxin-stimulated lipolysis. Various lines of evidence demonstrate that most, if not all, of the insulin-like activity of these glycosides results from H2O2 formed from an amine oxidase-catalyzed oxidation of the aminoalkyl moiety of these compounds. A contaminant in the bovine plasma albumin (BPA) preparations used in the bioassays was found to represent a major source of the amine oxidase activity. Membrane (ghost) preparations were also found to possess amine oxidase activity capable of forming H2O2 from the glycosides in amounts sufficient to express insulin-like activity. Preliminary experiments with intact adipocytes suggest that this activity is located on the cell surface. The BPA-associated activity corresponds to the known Cu2+-containing “plasma-type” amine oxidase (EC 1.4.3.6) on the basis of its substrate specificity and susceptibility to selective inhibitors. The plasma membrane activity appears to correspond to neither the plasma-type nor to the flavin-containing mitochondrial-type (EC 1.4.3.4) and remains to be identified. The observed potent antilipolytic effects of both H2O2 and the aminoalkyl glycosides points out that any mechanism used to explain the insulin-like action of H2O2 must account for this ability to inhibit lipolysis as well as to stimulate glucose utilization. That catalase inhibits the insulin-like action of the glycosides and H2O2, but not that of insulin indicates that insulin's action is not mediated by cell surface-produced H2O2. Also, since the insulin antagonistic activity of these glycosides was not inhibited by catalase, H2O2 formation is not responsible for this antagonism. The latter finding, added to present and previous evidence on the carbohydrate structural requirements involved in H2O2 production and in the insulin-like biological and binding properties of the aminoalkyl glycosides, is consistent with a role(s) for their carbohydrate moieties in both the insulin antagonistic and agonistic activities of these compounds.  相似文献   

4.
Nitraria tangutorum Bobr., a typical desert halophyte, plays an important ecological role because of its superior tolerance to severe drought and high salinity. Very little is known about the physiological adaptative mechanism of this species to environmental stresses. The aim of this study was to investigate the changes of antioxidant enzyme activities and the regulatory mechanism of ascorbate peroxidase (APX) activity in the calli from Nitraria tangutorum Bobr. after treatment with different NaCl concentrations. The activities of superoxide dismutase (SOD) and catalase (CAT) significantly increased in the calli treated with NaCl, while the peroxidase activity decreased. APX activity was also elevated significantly in response to NaCl, but the increase was partly abolished by H2O2 scavenger dimethylthiourea (DMTU). Furthermore, the excitatory effect of salinity on APX could be alleviated by the addition of exogenous CAT and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenylene iodonium, indicating that the modulation of the APX activity in Nitraria tangutorum Bobr. calli might be associated with NADPH oxidase-dependent H2O2 generation. Measurement and analysis using fluorescent dye 2′,7′-dichlorodihydrofluorescein diacetate showed the increase of H2O2 content in salinity-treated calli. The investigation of NADPH-dependent O2 production in plasma membrane (PM) vesicles isolated from Nitraria tangutorum Bobr. calli revealed that salinity treatment stimulated NADPH oxidase activity. In conclusion, these results suggest that the higher activities of antioxidant enzymes play an important role in the salt tolerance of Nitraria tangutorum Bobr. calli and that the extracellular production of H2O2, depending on the excitation of PM NADPH oxidase, is responsible for enhancing the APX activity in Nitraria tangutorum Bobr. calli under salinity stress.  相似文献   

5.
The relationship of H2O2 and jasmonic acid (JA) in wound-induced defense response was investigated in the leaves of pea (Pisum sativum L.) plants. The results showed that both wounding and JA treatment led to a significant increase in activities of plasma membrane NADPH oxidase and phenylalanine ammonialyase. However, such an increase was blocked by the pretreatment with plasma membrane NADPH oxidase inhibitors, O 2 ? scavengers, or H2O2 scavenger, implying that H2O2 functions downstream of JA. Furthermore, wounding treatment activated two key enzymes of JA biosynthesis, lipoxygenase and allene oxide synthase, while JA biosynthetic inhibitors impaired the wounding-induced H2O2 burst. Thus, it is suggested that H2O2 burst depends on JA production in plant wounding response.  相似文献   

6.
Nitric oxide (NO) is a stress factor or a signal molecule involved in various plant physiological and developmental processes. In the present study, the generation of reactive oxygen species and the metabolism of proline due to different sodium nitroprusside (SNP, an NO donor) concentrations were investigated in callus from halophyte Nitraria tangutorum Bobr. Treatment with SNP led to significant increases of hydrogen peroxide (H2O2) content and cell viability but notable reductions in hydrogen radical level and lipid peroxidation degree, and superoxide onion (O2 ?) content also enhanced in 100 μM SNP-treated calli. Using a chemical inhibitor for plasma membrane (PM) NADPH oxidase diphenylene iodonium (DPI), we found low O2 ? generation in untreated and 25 μM SNP-treated calli, whereas in those treated with 100 μM SNP O2 ? level exhibited a very little alteration, comparable to the absence of DPI. These suggest a high activity of PM NADPH oxidase in untreated calli. H2O2 scavenging enzymes (catalase, peroxidase [POD] and ascorbate peroxidase) and H2O2 forming enzymes (superoxide dismutase [SOD], cell wall-POD and diamine oxidase [DAO]) stimulated significantly in calli treated with different SNP concentrations while glutathione reductase activity decreased. In addition, a reduction in proline content was observed in SNP-treated calli. Moreover, different SNP concentrations stimulated proline dehydrogenase (PDH) and ornithine δ-aminotransferase but inhibited r-glutamyl kinase (GK). In conclusion, our results suggest that the increasing H2O2 generation was associated with the stimulation of SOD, cell wall-POD and DAO, and that the reduction of proline content might be the consequence of increased PDH activity and decreased GK activity in N. tangutorum Bobr. calli under SNP treatment.  相似文献   

7.
Superoxide dismutase, a scavenger of O?2. does not affect the rate of ethanol oxidation in a reconstituted system containing purified cytochrome P-450, NADPH-cytochrome c reductase, and dilauroyl l-3-phosphatidyl choline. The same concentration of Superoxide dismutase (50 μg/ml) completely abolishes the oxidation of epinephrine in this reconstituted system and ethanol oxidation by the xanthine-xanthine oxidase. Ethanol is not oxidized by the reconstituted system when NADPH is replaced by H2O2 but the addition of H2O2 to this sytem containing NADPH accelerates ethanol oxidation. This increase is abolished by the addition of Superoxide dismutase. Hydroxyl radical scavengers (50 mm dimethylsulfoxide, 100 mm benzoate, 100 mm mannitol, 20 mm thiourea) diminish the oxidation of ethanol in the reconstituted system by 48 to 76%. Thus hydroxyl radical may participate in the activity of reconstituted ethanol-oxidizing system, whereas Superoxide is not involved.  相似文献   

8.
Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii.  相似文献   

9.
The stoichiometry of hydroxylation reactions catalyzed by cytochrome P-450 was studied in a reconstituted enzyme system containing the highly purified cytochrome from phenobarbital-induced rabbit liver microsomes. Hydrogen peroxide was shown to be formed in the reconstituted system in the presence of NADPH and oxygen; the amount of peroxide produced varied with the substrated added. NADPH oxidation, oxygen consumption, and total product formation (sum of hydroxylated compound and hydrogen peroxide) were shown to be equimolar when cyclohexane, benzphetamine, or dimethylaniline served as the substrate. The stoichiometry observed represents the sum of two activities associated with cytochrome P-450. These are (1) hydroxylase activity: NADPH + H+ + O2 + RH → NADP+ + H2O + ROH; and (2) oxidase activity: NADPH + H+ + O2 → NADP+ + H2O2. Benzylamphetamine (desmethylbenzphetamine) acts as a pseudosubstrate in that it stimulates peroxide formation to the same extent as the parent compound (benzphetamine), but does not undergo hydroxylation. Accordingly, when benzylamphetamine alone is added in control experiments to correct for the NADPH and O2 consumption not associated with benzphetamine hydroxylation, the expected 1:1:1 stoichiometry for NADPH oxidation, O2 consumption, and formaldehyde formation in the hydroxylation reaction is observed.  相似文献   

10.
PB90 is a novel protein elicitor isolated from Phytophthora boehmeriae. Here, we report that treatment of PB90 stimulates hypericin production and hydrogen peroxide (H2O2) generation in Hypericum perforatum L. cells and demonstrate that H2O2 is essential for PB90-induced hypericin production. To further study the source of PB90-triggered H2O2, we have investigated activities of plasma membrane NADPH oxidase in Hypericum perforatum L. cells subjected to PB90 treatment. It is revealed that treatment of the cells with PB90 significantly increases NADPH oxidase activity. NADPH oxidase inhibitors suppress not only the PB90-stimulated NADPH oxidase activity but also the PB90-triggered H2O2 generation and PB90-induced hypericin production, showing that NADPH oxidase is involved in PB90-triggered H2O2 generation and hypericin production. Moreover, the suppression of NADPH oxidase inhibitors on PB90-induced hypericin production can be reversed by H2O2, although H2O2 per se has no effects on hypericin production of the cells. Together, the data demonstrate that PB90 may induce hypericin production of H. perforatum cells through the NADPH oxidase-mediated H2O2 signaling pathway.  相似文献   

11.
The arbuscular mycorrhizal symbiosis can alleviate salt stress in plants by altering strigolactone levels in the host plant. The aim of this study was to investigate the mechanism by which strigolactones enhance salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. Strigolactone levels, as determined by means of germination bioassay, gradually increased with treatment time of NaCl applied. Inhibition of NADPH oxidase activity and chemical scavenging of H2O2 significantly reduced strigolactone-induced salt tolerance and decreased strigolactone levels. The H2O2-induced strigolactone accumulation was accompanied by increased tolerance to salt stress. These results strongly indicated that elevated H2O2 concentration resulting from enhanced NADPH oxidase activity regulated strigolactone-induced salt stress tolerance in arbuscular mycorrhizal S. cannabina seedlings.  相似文献   

12.
Conditions for the recovery of H2O2 from microsomes and for determination of the rate and extent of H2O2 formation during oxidation of NADPH by liver microsomes have been investigated. H2O2 was determined by two methods that are applicable to conditions existing during microsomal mixed function oxidation reactions, provided that contaminating catalase activity is inhibited by azide and that interference by other mixed function oxidation reactions can be excluded. To estimate the formation of H2O2 in absence of azide, H2O2 was determined indirectly by the production of HCHO during oxidation of cold and 14C-labeled methanol and an excess of exogenous catalase. As additional catalase-independent decomposition of H2O2 also occurs during oxidation of NADPH, the kinetics of H2O2 formation in microsomes is influenced by two independent processes. H2O2 will be produced under optimal conditions i.e., at V when O2 and NADPH are in excess. Addition or formation of increasing amounts of H2O2 raises the substrate (H2O2) concentration and will enhance the rate of breakdown of H2O2.  相似文献   

13.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

14.
The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.  相似文献   

15.
It is postulated that the increase in H2O2 formation following phagocytosis in guinea pig polymorphonuclear leukocytes is due to the activation of a plasma-membrane-located NAD(P)H oxidase. The cyanide-resistant oxidase activity of intact leukocytes was markedly stimulated when the leukocytes were suspended in a hypotonic medium. Hydrogen peroxide was the principal product of the oxidase reaction. Evidence that the oxidase activity was located on the outside surface of the plasma membrane was the finding that added NAD(P)H was rapidly oxidized and the plasma membrane was impermeable to NADH or NADPH. Further evidence was the marked inhibition of the oxidase by p-CMB which also did not penetrate the plasma membrane. The oxidase was also inhibited on disruption of the plasma membrane. In addition, the enhanced oxidase activity under hypotonic conditions decreased to normal values when the medium was made isotonic and suggested that a reversible conformational change in the plasma membrane was responsible for the activation of oxidase activities.  相似文献   

16.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

17.
18.
《Free radical research》2013,47(2):83-98
The activation of O2??-formation by neutrophil NADPH oxidase is associated with phosphorylation of several membrane and cytosolic proteins. In the membranes a phosphoprotein of 32 kDa belonging to the NADPH oxidase-cytochrome b-245 system (P. Bellavite et al., Free Rad. Res. Commun., 1, 11 (1985)) showed the highest relative increase of 32Pi incorporation. Concomitant with the phosphorylation, a shift of the apparent molecular mass of the protein from 31 to 32 kDa occurred. The time-course, the sensitivity to trifluoperazine and the dose-dependence of phosphorylation were similar to those of O2?? forming activity, except that the latter showed a longer lag-time than the former. The increase of the 32kDa phosphoprotein was also comparable to the kinetics of cytochrome b-245 reduction by anaerobically activated neutrophils. The phosphorylation and the NADPH oxidase were triggered by various stimulants including phorbol myristate acetate, opsonized zymosan, arachidonic acid and sodium fluoride. With arachidonic acid the O2?? formation was highly active but the phosphorylation was low. With fluoride the enzyme activity was reversible upon removal of the stimulant but the phosphorylation of the 32 kDa peptide was not reversible. Neutrophils treated with PMA at 17°C showed phosphorylation but not activation. The results indicate that phosphorylation of a component of NADPH oxidase is a fundamental but probably not sufficient event in the activation mechanism of the enzyme.  相似文献   

19.
We have used HyPer, a ratiometric GFP-based biosensor, to follow H2O2 dynamics in live cells. We have found that activation of the EGF receptor in epithelial cells leads to sustained generation of intracellular H2O2, which is blocked by apocynin, an inhibitor of the plasma membrane NADPH oxidase assembly. Apocynin also blocked HeLa cell proliferation induced by EGF, indicating that NADPH oxidase is critically involved. However, apocynin failed to alter the kinetics of EGF-stimulated ERK1/2 activation. We conclude that NADPH oxidase and intracellular H2O2 are important downstream targets of EGF receptor that mediate the proliferation response by mechanisms distinct from activation of the classical ERK1/2 MAP-kinase pathway.  相似文献   

20.
Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1) At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2) After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3) Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号