首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of the molecular mechanisms regulating cell ingression, epithelial–mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak. Here, we identify a previously uncharacterized chicken Wnt11 gene, Wnt11b, that is orthologous to the frog Wnt11 and zebrafish Wnt11 (silberblick) genes. Chicken Wnt11b is expressed in the primitive streak in a pattern similar to chicken Wnt5a and Wnt5b. When non-canonical Wnt signaling is blocked using a Dishevelled dominant-negative protein, gastrulation movements are inhibited and cells accumulate in the primitive streak. Furthermore, disruption of non-canonical Wnt signaling by overexpression of full-length or dominant-negative Wnt11b or Wnt5a constructions abrogates normal cell migration through the primitive streak. We conclude that non-canonical Wnt signaling, mediated in part by Wnt11b, is important for regulation of gastrulation cell movements in the avian embryo.  相似文献   

2.
Vertebrate heart development requires specification of cardiac precursor cells, migration of cardiac progenitors as well as coordinated cell movements during looping and septation. DM-GRASP/ALCAM/CD166 is a member of the neuronal immunoglobulin domain superfamily of cell adhesion molecules and was recently suggested to be a target gene of non-canonical Wnt signalling. Loss of DM-GRASP function did not affect specification of cardiac progenitor cells. Later during development, expression of cardiac marker genes in the first heart field of Xenopus laevis such as Tbx20 and TnIc was reduced, whereas expression of the second heart field marker genes Isl-1 and BMP-4 was unaffected. Furthermore, loss of DM-GRASP function resulted in defective cell adhesion and cardiac morphogenesis. Additionally, expression of DM-GRASP can rescue the phenotype that results from the loss of non-canonical Wnt11-R signalling suggesting that DM-GRASP and non-canonical Wnt signalling are functionally coupled during cardiac development.  相似文献   

3.
4.
In the frog embryo, a sub-population of trunk neural crest (NC) cells undergoes a dorsal route of migration to contribute to the mesenchyme in the core of the dorsal fin. Here we show that a second population of cells, originally located in the dorsomedial region of the somite, also contributes to the fin mesenchyme. We find that the frog orthologue of Wnt11 (Wnt11-R) is expressed in both the NC and somite cell populations that migrate into the fin matrix. Wnt11-R is expressed prior to migration and persists in the mesenchymal cells after they have distributed throughout the fin. Loss of function studies demonstrate that Wnt11-R activity is required for an epithelial to mesenchymal transformation (EMT) event that precedes migration of cells into the fin matrix. In Wnt11-R depleted embryos, the absence of fin core cells leads to defective dorsal fin development and to collapse of the fin structure. Experiments using small molecule inhibitors indicate that dorsal migration of fin core cells depends on calcium signaling through calcium/calmodulin-dependent kinase II (CaMKII). In Wnt11-R depleted embryos, normal migration of NC cells and dorsal somite cells into the fin and normal fin development can be rescued by stimulation of calcium release. These studies are consistent with a model in which Wnt11-R signaling, via a downstream calcium pathway, regulates fin cell migration and, more generally, indicates a role for non-canonical Wnt signaling in regulation of EMT.  相似文献   

5.
6.
7.
8.
Members of the Wnt family have been implicated in a variety of developmental processes including axis formation, patterning of the central nervous system and tissue morphogenesis. Recent studies have shown that a Wnt signalling pathway similar to that involved in the establishment of planar cell polarity in Drosophila regulates convergent extension movements during zebrafish and Xenopus gastrulation. This finding provides a good starting point to dissect the complex cell biology and genetic regulation of vertebrate gastrulation movements.  相似文献   

9.
Specification and early patterning of the vertebrate heart are dependent on both canonical and noncanonical wingless (Wnt) signal pathways. However, the impact of each Wnt pathway on the later stages of myocardial development and differentiation remains controversial. Here, we report that the components of each Wnt signal conduit are expressed in the developing and postnatal heart, yet canonical/β-catenin activity is restricted to nonmyocardial regions. Subsequently, we observed that noncanonical Wnt (Wnt11) enhanced myocyte differentiation while preventing stabilization of the β-catenin protein, suggesting active repression of canonical Wnt signals. Wnt11 stimulation was synonymous with activation of a caspase 3 signal cascade, while inhibition of caspase activity led to accumulation of β-catenin and a dramatic reduction in myocyte differentiation. Taken together, these results suggest that noncanonical Wnt signals promote myocyte maturation through caspase-mediated inhibition of β-catenin activity.  相似文献   

10.
Wnt signaling plays a crucial role in the control of morphogenesis in several tissues. Herein, we describe the role of Wnt11 during cardiac differentiation of embryonic stem cells. First, we examined the expression profile of Wnt11 during the course of differentiation in embryoid bodies, and then compared its expression in retinoic acid-treated embryoid bodies with that in untreated. In differentiating embryoid bodies, Wnt11 expression rose along with that of Nkx2.5 expression and continued to increase. When the embryoid bodies were treated with retinoic acid, Wnt11 expression decreased in parallel with the decreased expression of cardiac genes. Further, treatment of embryoid bodies with medium containing Wnt11 increased the expression of cardiac marker genes. Based on these results, we propose that Wnt11 plays an important role for cardiac development by embryoid bodies, and may be a key regulator of cardiac muscle cell proliferation and differentiation during heart development.  相似文献   

11.
The Xenopus gene crescent encodes a member of the secreted Frizzled-related protein (sFRP) family and is expressed in the head organizer region. However, the target and function of Crescent in early development are not well understood. Here, we describe a role of Crescent in the regulation of convergent extension movements (CEMs) during gastrulation and neurulation. We show that overexpression of Crescent in whole embryos or animal caps inhibits CEMs without affecting tissue specification. Consistent with this, Crescent efficiently forms complexes with Xwnt11 and Xwnt5a, in contrast to another sFRP, Frzb1. As expected, the inhibitory effect of Crescent or Xwnt11 on CEMs is cancelled when both proteins are coexpressed in the neuroectoderm. Interestingly, when coexpressed in the dorsal mesoderm, the activity of Xwnt11 is rather enhanced by Crescent. Supporting this finding, the inhibition of CEMs by Crescent in mesodermalized but not neuralized animal caps is reversed by the dominant-negative form of Cdc42, a putative mediator of Wnt/Ca2+ pathway. Antisense morpholino oligos for Crescent impair neural plate closure and elicit microcephalic embryos with a shortened trunk without affecting early tissue specification. These data suggest a potential role for Crescent in head formation by regulating a non-canonical Wnt pathway positively in the adjacent posterior mesoderm and negatively in the overlying anterior neuroectoderm.  相似文献   

12.
13.
14.
Progressive cardiac fibrosis accelerates the development of heart failure. Here, we aimed to explore serum Wnt5a and Wnt11 levels in hypertension patients, the roles of Wnt5a and Wnt11 in cardiac fibrosis and potential mechanisms under pressure overload. The pressure overload mouse model was built by transverse aortic constriction (TAC). Cardiac fibrosis was analyzed by Masson’s staining. Serum Wnt5a or Wnt11 was elevated and associated with diastolic dysfunction in hypertension patients. TAC enhanced the expression and secretion of Wnt5a or Wnt11 from cardiomyocytes (CMs), cardiac fibroblasts (CFs), and cardiac microvascular endothelial cells (CMECs). Knockdown of Wnt5a and Wnt11 greatly improved cardiac fibrosis and function at 4 weeks after TAC. In vitro, shWnt5a or shWnt11 lentivirus transfection inhibited pro-fibrotic effects in CFs under mechanical stretch (MS). Similarly, conditional medium from stretched-CMs transfected with shWnt5a or shWnt11 lentivirus significantly suppressed the pro-fibrotic effects induced by conditional medium from stretched-CMs. These data suggested that CMs- or CFs-derived Wnt5a or Wnt11 showed a pro-fibrotic effect under pressure overload. In vitro, exogenous Wnt5a or Wnt11 activated ERK and p38 (fibrotic-related signaling) pathway, promoted the phosphorylation of EGFR, and increased the expression of Frizzled 5 (FZD5) in CFs. Inhibition or knockdown of EGFR greatly attenuated the increased FZD5, p-p38, and p-ERK levels, and the pro-fibrotic effect induced by Wnt5a or Wnt11 in CFs. Si-FZD5 transfection suppressed the increased p-EGFR level, and the fibrotic-related effects in CFs treated with Wnt5a or Wnt11. In conclusion, pressure overload enhances the secretion of Wnt5a or Wnt11 from CMs and CFs which promotes cardiac fibrosis by activation the crosstalk of FZD5 and EGFR. Thus, Wnt5a or Wnt11 may be a novel therapeutic target for the prevention of cardiac fibrosis under pressure overload.Subject terms: Heart failure, Translational research  相似文献   

15.
16.
Convergent extension movements are the main driving force of Xenopus gastrulation. A fine-tuned regulation of cadherin-mediated cell-cell adhesion is thought to be required for this process. Members of the Wnt family of extracellular glycoproteins have been shown to modulate cadherin-mediated cell-cell adhesion, convergent extension movements, and cell differentiation. Here we show that endogenous Wnt/beta-catenin signaling activity is essential for convergent extension movements due to its effect on gene expression rather than on cadherins. Our data also suggest that XLEF-1 rather than XTCF-3 is required for convergent extension movements and that XLEF-1 functions in this context in the Wnt/beta-catenin pathway to regulate Xnr-3. In contrast, activation of the Wnt/Ca2+ pathway blocks convergent extension movements, with potential regulation of the Wnt/beta-catenin pathway at two different levels. PKC, activated by the Wnt/Ca2+ pathway, blocks the Wnt/beta-catenin pathway upstream of beta-catenin and phosphorylates Dishevelled. CamKII, also activated by the Wnt/Ca2+ pathway, inhibits the Wnt/beta-catenin signaling cascade downstream of beta-catenin. Thus, an opposing cross-talk of two distinct Wnt signaling cascades regulates convergent extension movements in Xenopus.  相似文献   

17.
The SALL4 promoter has not yet been characterized. Animal studies showed that SALL4 is downstream of and interacts with TBX5 during limb and heart development, but a direct regulation of SALL4 by TBX5 has not been demonstrated. For other SAL genes, regulation within the Shh, Wnt, and Fgf pathways has been reported. Chicken csal1 expression can be activated by a combination of Fgf4 and Wnt3a or Wnt7a. Murine Sall1 enhances, but Xenopus Xsal2 represses, the canonical Wnt signaling. Here we describe the cloning and functional analysis of the SALL4 promoter. Within a minimal promoter region of 31bp, we identified a consensus TCF/LEF-binding site.The SALL4 promoter was strongly activated not only by LEF1 but also by TCF4E. Mutation of the TCF/LEF-binding site resulted in decreased promoter activation. Our results demonstrate for the first time the direct regulation of a SALL gene by the canonical Wnt signaling pathway.  相似文献   

18.
The single-pass transmembrane protein Ryk (atypical receptor related tyrosine kinase) functions as a Wnt receptor. However, Ryk's correlation with Wnt/Frizzled (Fz) signaling is poorly understood. Here, we report that Ryk regulates Xenopus laevis convergent extension (CE) movements via the β-arrestin 2 (βarr2)-dependent endocytic process triggered by noncanonical Wnt signaling. During X. laevis gastrulation, βarr2-mediated endocytosis of Fz7 and dishevelled (Dvl/Dsh) actually occurs in the dorsal marginal zone tissues, which actively participate in noncanonical Wnt signaling. Noncanonical Wnt11/Fz7-mediated endocytosis of Dsh requires the cell-membrane protein Ryk. Ryk interacts with both Wnt11 and βarr2, cooperates with Fz7 to mediate Wnt11-stimulated endocytosis of Dsh, and signals the noncanonical Wnt pathway in CE movements. Conversely, depletion of Ryk and Wnt11 prevents Dsh endocytosis in dorsal marginal zone tissues. Our study suggests that Ryk functions as an essential regulator for noncanonical Wnt/Fz-mediated endocytosis in the regulation of X. laevis CE movements.  相似文献   

19.
Anterior-posterior neural patterning of Xenopus embryo is determined during gastrulation and then followed by differentiation of neural structures including brain and eye. The cement gland is a mucus-secreting neural organ located in the anterior end of the neural plate. This study analyzed expression patterns of Xenopus galectin-VIa (Xgalectin-VIa) by whole-mount in situ hybridization, and found highly restricted expression of this gene in the cement gland region. These patterns were similar to those of XAG-1 and XCG, known cement gland-specific genes. In addition, Xgalectin-VIa was expressed in the dorsal edge of eye vesicles, the otic vesicle, and in part of the hatching gland at the tadpole stage. Although the spatial expression pattern was similar, the temporal expression of Xgalectin-VIa differed from that of XAG-1 and XCG. RT-PCR analysis showed only weak Xgalectin-VIa expression in early neurula embryos, whereas both XAG-1 and CGS were strongly expressed at that stage. We also showed that Xgalectin-VIa expression is repressed by enhancement of Wnt signaling and increased by its inhibition. Furthermore, Xgalectin-VIa expression was activated by neural-gene inducer Xotx2, as is the case for XAG-1 and CGS. Together, these results indicated that Xgalectin-VIa possesses different features from other cement gland genes and is a novel and useful marker of the cement gland in developing embryos.  相似文献   

20.
Soon after fertilization, vertebrate embryos grow very rapidly. Thus, early in gestation, a sizeable yet underdeveloped organism requires circulating blood. This need dictates the early appearance of a contractile heart, which is the first functional organ in both the avian and mammalian embryo. The heart arises from paired mesodermal regions within the anterior half of the embryo. As development proceeds, these bilateral precardiac fields merge at the midline to give rise to the primary heart tube. How specific areas of nondifferentiated mesoderm organize into myocardial tissue has been a question that has long intrigued developmental biologists. In recent years, the regulation of Wnt signal transduction has been implicated as an important event that initiates cardiac development. While initial reports in Drosophila and the bird had implicated Wnt proteins as promoters of cardiac tissue formation, subsequent findings that the WNT inhibitors Dkk1 and crescent possess cardiac-inducing activities led to the contrary hypothesis that WNTs actively inhibit cardiogenesis. This seeming contradiction has been resolved, in part, by more recent information indicating that Wnts stimulate multiple signal transduction pathways. In this review, we will examine what is presently known about the importance of regulated Wnt activity for the formation of the heart and the development of the myocardium and discuss this information in context of the emerging complexity of Wnt signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号