首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
WrbA is an oligomeric flavodoxin-like protein that binds one molecule of flavin mononucleotide (FMN) per monomer and whose redox activity is implicated in oxidative stress defense. WrbA thermostability and oligomerization in the presence and absence of bound FMN were investigated using complementary biophysical methods. Infrared spectroscopy indicates similar structures for apo and holoWrbA. FMN binding has a dramatic effect on WrbA thermal stability, shifting the Tm by approximately 40 degrees C. Upon denaturation, the protein forms insoluble aggregates that lack native secondary structure and have no bound FMN. Circular dichroism (CD) reveals that the thermal unfolding of apo and holoWrbA proceeds via the formation of an aggregation-prone intermediate that retains substantial secondary structure but has lost the native configuration of the active site. This intermediate persists in solution up to 100 degrees C at micromolar concentrations. A similar partially folded state is populated during chemical denaturation with guanidinium chloride, but accumulation of the intermediate is evident only in the absence of FMN. The results also suggest that WrbA maintains some interaction with FMN in its partially folded state, despite the loss of the induced CD signal of FMN. On the basis of these data, the unfolding process can be depicted as follows: native holoprotein --> holointermediate --> apointermediate --> insoluble aggregate. Mass spectrometry shows that FMN promotes WrbA association into tetramers, which are more thermoresistant than dimers or monomers, suggesting that multimerization underlies the FMN effect on WrbA thermostability. This study illustrates the utility of analyzing conformational transitions and intermolecular interactions using methods that probe the liquid, solid, and gas phases.  相似文献   

2.
WrbA is a novel multimeric flavodoxin-like protein of unknown function. A recent high-resolution X-ray crystal structure of E. coli WrbA holoprotein revealed a methionine sulfoxide residue with full occupancy in the FMN-binding site, a finding that was confirmed by mass spectrometry. In an effort to evaluate whether methionine sulfoxide may have a role in WrbA function, the present analyses were undertaken using molecular dynamics simulations in combination with further mass spectrometry of the protein. Methionine sulfoxide formation upon reconstitution of purified apoWrbA with oxidized FMN is fast as judged by kinetic mass spectrometry, being complete in ~5 h and resulting in complete conversion at the active-site methionine with minor extents of conversion at heterogeneous second sites. Analysis of methionine oxidation states during purification of holoWrbA from bacterial cells reveals that methionine is not oxidized prior to reconstitution, indicating that methionine sulfoxide is unlikely to be relevant to the function of WrbA in vivo. Although the simulation results, the first reported for WrbA, led to no hypotheses about the role of methionine sulfoxide that could be tested experimentally, they elucidated the origins of the two major differences between apo- and holoWrbA crystal structures, an alteration of inter-subunit distance and a rotational shift within the tetrameric assembly.  相似文献   

3.
The tryptophan repressor binding protein WrbA binds to the tryptophan repressor protein TrpR. Although the biological role of WrbA remains unclear, it has been proposed to function in enhancing the stability of TrpR-DNA complexes. Sequence database analysis has identified WrbA as a founding member of a flavodoxin-like family of proteins. Here we present crystal structures of WrbA from Deinococcus radiodurans and Pseudomonas aeruginosa and their complexes with flavin mononucleotide. The protomer structure is similar to that of previously determined long-chain flavodoxins; however, each contains a conserved inserted region unique to the WrbA family. Interestingly, each WrbA protein forms a homotetramer with 222 symmetry, unique among flavodoxin-like proteins, in which each protomer binds one flavin mononucleotide cofactor molecule.  相似文献   

4.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of 14 different subunits (Nqo1-Nqo14). Of these, seven subunits (Nqo7, Nqo8, and Nqo10-14) which are equivalent to the mitochondrial DNA-encoded subunits of complex I constitute the membrane segment of the enzyme complex; the remaining subunits make up the peripheral part of the enzyme. We report here on the biochemical characterization and heterologus expression of the Nqo10 subunit. The Nqo10 subunit could not be extracted from the Paracoccus membranes by NaI or alkaline treatment, which is consistent with the presumed membrane localization. By using the maltose-binding protein (MBP) fusion system, the Nqo10 subunit was overexpressed in Escherichia coli. The MBP-fused Nqo10 was expressed in membrane fractions of the host cell and was extractable by Triton X-100. The extracted fusion protein was then isolated by one-step affinity purification through an amylose column. By using immunochemical methods in conjunction with cysteine-scanning mutagenesis and chemical modification techniques, the topology of the Nqo10 subunit expressed in E. coli membranes was determined. The data indicate that the Nqo10 subunit consists of five transmembrane segments with the N- and C-terminal regions facing the periplasmic and cytoplasmic sides of the membrane, respectively. In addition, the data also suggest that the proposed topology of the MBP-fused Nqo10 subunit expressed in E. coli membranes is consistent with that of the Nqo10 subunit in the native Paracoccus membranes. From the experimentally determined topology together with computer prediction programs, a topological model for the Nqo10 subunit is proposed.  相似文献   

5.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans consists of at least 14 unlike subunits (designated Nqo1-14). The NDH-1 is composed of two segments (the peripheral and membrane segments). The membrane domain segment appears to be made up of seven subunits (Nqo7, -8, -10-14). In this report, the characterization of the Paracoccus Nqo11 subunit has been investigated. An antibody against the C-terminal 12 amino acid residues of the Paracoccus Nqo11 subunit (Nqo11c) has been raised. The Nqo11c antibody reacted with a single band (11 kDa) of the Paracoccus membranes and cross-reacted with Rhodobactor capsulatus membranes. The Nqo11 subunit was not able to be extracted from the Paracoccus membranes by NaI or alkaline treatment, unlike the peripheral subunits (Nqo1 and Nqo6). The C-terminal region of the Paracoccus Nqo11 is exposed to the cytoplasmic phase. For further characterization of the Paracoccus Nqo11 subunit, the subunit was overexpressed in Escherichia coli by using the maltose-binding protein (MBP) fusion system. The MBP-fused Nqo11 subunit was expressed in the E. coli membranes (but not in soluble phase) and was extracted by Triton X-100. The isolated MBP-fused Nqo11 subunit interacted with the phospholipid vesicles and suppressed their membrane fluidity. Topological studies of the Nqo11 subunit expressed in E. coli membranes have been performed by using cysteine mapping and immunochemical analyses. The data suggest that the Nqo11 subunit has three transmembrane segments and its C-terminus protrudes into the cytoplasmic phase.  相似文献   

6.
The NADH-quinone oxidoreductase from Paracoccus denitrificans consists of 14 subunits (Nqo1-14) and contains one FMN and eight iron-sulfur clusters. The Nqo3 subunit possesses fully conserved 11 Cys and 1 His in its N-terminal region and is considered to harbor three iron-sulfur clusters; however, only one binuclear (N1b) and one tetranuclear (N4) were previously identified. In this study, the Nqo3 subunit containing 1x[2Fe-2S] and 2x[4Fe-4S] clusters was expressed in Escherichia coli. The second [4Fe-4S](1+) cluster is detected by EPR spectroscopy below 6 K, exhibiting very fast spin relaxation. The resolved EPR spectrum of this cluster is broad and nearly axial. The subunit exhibits an absorption-type EPR signal around g approximately 5 region below 6 K, most likely arising from an S = 3/2 ground state of the fast-relaxing [4Fe-4S](1+) species. The substitution of the conserved His(106) with Cys specifically affected the fast-relaxing [4Fe-4S](1+) cluster, suggesting that this cluster is coordinated by His(106). In the cholate-treated NDH-1-enriched P. denitrificans membranes, we observed EPR signals arising from a [4Fe-4S] cluster below 6 K, exhibiting properties similar to those of cluster N5 detected in other complex I/NDH-1 and of the fast-relaxing [4Fe-4S](1+) cluster in the expressed Nqo3 subunit. Hence, we propose that the His-coordinated [4Fe-4S] cluster corresponds to cluster N5.  相似文献   

7.
Kao MC  Matsuno-Yagi A  Yagi T 《Biochemistry》2004,43(12):3750-3755
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of 14 different subunits (designated Nqo1-14), seven of which are located in the membrane domain and the other seven in the peripheral domain. It has been previously reported that membrane domain subunit Nqo7 (ND3) directly interacts with peripheral subunit Nqo6 (PSST) by using a cross-linker, m-maleimidobenzoyl-N-hydrosuccinimide ester, and heterologous expression [Di Bernardo, S., and Yagi, T. (2001) FEBS Lett. 508, 385-388]. To further explore the near-neighbor relationship of the subunits, a zero-length cross-linker, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), and the Paracoccus membranes were used, and the cross-linked products were examined with antibodies specific to subunits Nqo1-11. The Nqo6 subunit was cross-linked to subunit Nqo9 (TYKY). In addition, a ternary product of Nqo3 (75k), Nqo6, and Nqo7 and binary products of Nqo3 and Nqo6 and of Nqo6 and Nqo7 were observed, but a binary product of Nqo3 and Nqo7 was not detected. The Nqo4 (49k) subunit was found to be associated with the Nqo7 subunit. Furthermore, Paracoccus subunits Nqo3, Nqo6, and Nqo7 were heterologously coexpressed in Escherichia coli, and EDC cross-linking experiments were carried out using the E. coli membranes expressing these three subunits. The results were the same as those obtained with Paracoccus membranes. On the basis of the data, subunit arrangements of NDH-1 were discussed.  相似文献   

8.
Uhlmann M  Friedrich T 《Biochemistry》2005,44(5):1653-1658
The proton-pumping NADH:ubiquinone oxidoreductase, which is also called respiratory complex I, transfers electrons from NADH to ubiquinone via one flavin mononucleotide (FMN) and up to nine iron-sulfur clusters. A structural minimal form of complex I consisting of 14 different subunits called NuoA to NuoN (or Nqo1 to Nqo14) is found in bacteria. The isolated Escherichia coli complex I can be split into a NADH dehydrogenase fragment, a connecting fragment, and a membrane fragment. The soluble NADH dehydrogenase fragment represents the electron input part of the complex and consists of the subunits NuoE, F, and G. The FMN and four iron-sulfur clusters have been detected in this fragment by means of EPR spectroscopy. One of the EPR signals, called N1c, has spectral properties, which are not found in preparations of the complex from other organisms. Therefore, it is attributed to an additional binding motif on NuoG, which is present only in a few bacteria including E. coli. Here, we show by means of EPR spectroscopic analysis of the NADH dehydrogenase fragment containing site-directed mutations on NuoG that the EPR signals in question derived from cluster N1a on NuoE. The mutations in NuoG disturbed the assembly of the overproduced NADH dehydrogenase fragment indicating that a yet undetected cluster might be bound to the additional motif. Thus, there is no third binuclear iron-sulfur "N1c" in the E. coli complex I but an additional tetranuclear cluster that may be coined N7.  相似文献   

9.
The flavoprotein WrbA, originally described as a tryptophan (W) repressor-binding protein in Escherichia coli, has recently been shown to exhibit the enzymatic activity of a NADH:quinone oxidoreductase. This finding points toward a possible role in stress response and in the maintenance of a supply of reduced quinone. We have determined the three-dimensional structure of the WrbA holoprotein from E. coli at high resolution (1.66 Å), and we observed a characteristic, tetrameric quaternary structure highly similar to the one found in the WrbA homologs of Deinococcus radiodurans and Pseudomonas aeruginosa. A similar tetramer was originally observed in an iron-sulfur flavoprotein involved in the reduction of reactive oxygen species. Together with other, recently characterized proteins such as YhdA or YLR011wp (Lot6p), these tetrameric flavoproteins may constitute a large family with diverse functions in redox catalysis. WrbA binds substrates at an active site that provides an ideal stacking environment for aromatic moieties, while providing a pocket that is structured to stabilize the ADP part of an NADH molecule in its immediate vicinity. Structures of WrbA in complex with benzoquinone and NADH suggest a sequential binding mechanism for both molecules in the catalytic cycle.  相似文献   

10.
WrbA (tryptophan [W] repressor-binding protein) was discovered in Escherichia coli, where it was proposed to play a role in regulation of the tryptophan operon; however, this has been put in question, leaving the function unknown. Here we report a phylogenetic analysis of 30 sequences which indicated that WrbA is the prototype of a distinct family of flavoproteins which exists in a diversity of cell types across all three domains of life and includes documented NAD(P)H:quinone oxidoreductases (NQOs) from the Fungi and Viridiplantae kingdoms. Biochemical characterization of the prototypic WrbA protein from E. coli and WrbA from Archaeoglobus fulgidus, a hyperthermophilic species from the Archaea domain, shows that these enzymes have NQO activity, suggesting that this activity is a defining characteristic of the WrbA family that we designate a new type of NQO (type IV). For E. coli WrbA, the K(m)(NADH) was 14 +/- 0.43 microM and the K(m)(benzoquinone) was 5.8 +/- 0.12 microM. For A. fulgidus WrbA, the K(m)(NADH) was 19 +/- 1.7 microM and the K(m)(benzoquinone) was 37 +/- 3.6 microM. Both enzymes were found to be homodimeric by gel filtration chromatography and homotetrameric by dynamic light scattering and to contain one flavin mononucleotide molecule per monomer. The NQO activity of each enzyme is retained over a broad pH range, and apparent initial velocities indicate that maximal activities are comparable to the optimum growth temperature for the respective organisms. The results are discussed and implicate WrbA in the two-electron reduction of quinones, protecting against oxidative stress.  相似文献   

11.
The NADH:menaquinone oxidoreductase (Nqo) is one of the enzymes present in the respiratory chain of the thermohalophilic bacterium Rhodothermus marinus. The genes coding for the R. marinus Nqo subunits were isolated and sequenced, clustering in two operons [nqo1 to nqo7 (nqoA) and nqo10 to nqo14 (nqoB)] and two independent genes (nqo8 and nqo9). Unexpectedly, two genes encoding homologues of a NhaD Na+/H+ antiporter (NhaD) and of a pterin-4alpha-carbinolamine dehydratase (PCD) were identified within nqoB, flanked by nqo13 and nqo14. Eight conserved motives to harbour iron-sulphur centres are identified in the deduced primary structures, as well as two consensus sequences to bind nucleotides, in this case NADH and FMN. Moreover, the open-reading-frames of the putative NhaD and PCD were shown to be co-transcribed with the other complex I genes encoded by nqoB. The possible role of these two genes in R. marinus complex I is discussed.  相似文献   

12.
In the mammalian liver, there is an abundance of enzymes that function to enable the safe and efficient elimination of potentially harmful xenobiotics that are encountered through environmental exposure. A variety of factors, including gender and genetic polymorphisms, contribute to the variation between an individual system's detoxification capacity and thus its ability to protect itself against oxidative stress, cellular damage, cell death, etc. NAD(P)H:quinone oxidoreducatase 1 (Nqo1) is an antioxidant enzyme that plays a major role in reducing reactive electrophiles, thereby protecting cells from free-radical damage and oxidative stress. The goal of this study was to determine the gender-specific expression and inducibility of Nqo1 in the Sprague Dawley (SD) and August Copenhagen x Irish (ACI) rat strains, two strains that are commonly used in drug metabolism and drug-induced enzyme induction, toxicity, and carcinogenesis studies. Nqo1 mRNA, protein, and activity levels were determined through 96 h in SD and ACI males and females following treatment with known Nqo1 inducers oltipraz and butylated hydroxyanisole. In the SD strain, gender dimorphic expression of Nqo1 was observed with female mRNA, protein, and activity levels being significantly higher than in males. In contrast, there were minimal differences in Nqo1 mRNA, protein, and activity levels between ACI males and females. The gender dimorphic expression of Nqo1 in the SD rats was maintained through the course of induction, with female-induced levels greater than male-induced levels indicating that SD females may have a greater capacity to protect against oxidative stress and thus a decreased susceptibility to carcinogens.  相似文献   

13.
Comparison of the amino acid sequence of rat liver NADPH-cytochrome P-450 oxidoreductase with that of flavoproteins of known three-dimensional structure suggested that residues Tyr-140 and Tyr-178 are involved in binding of FMN to the protein. To test this hypothesis, NADPH-cytochrome P-450 oxidoreductase was expressed in Escherichia coli using the expression-secretion vector pIN-III-ompA3, and site-directed mutagenesis was employed to selectively alter these residues and demonstrate that they are major determinants of the FMN-binding site. Bacterial expression produced a membrane-bound 80-kDa protein containing 1 mol each of FMN and FAD per mol of enzyme, which reduced cytochrome c at a rate of 51.5 mumol/min/mg of protein and had absorption spectra and kinetic properties very similar to those of the rat liver enzyme. Replacement of Tyr-178 with aspartate abolished FMN binding and cytochrome c reductase activity. Incubation with FMN increased catalytic activity to a maximum of 8.6 mumol/min/mg of protein. Replacement of Tyr-140 with aspartate did not eliminate FMN binding, but reduced cytochrome c reductase activity about 5-fold, suggesting that FMN may be bound in a conformation which does not permit efficient electron transfer. Substitution of phenylalanine at either position 140 or 178 had no effect on FMN content or catalytic activity. The FAD level in the Asp-178 mutant was also decreased, suggesting that FAD binding is dependent upon FMN; FAD incorporation may occur co-translationally and require prior formation of an intact FMN domain.  相似文献   

14.
15.
Strong sequence similarity has been reported among WrbA (the Trp repressor-binding protein of Escherichia coli); Ycp4, a protein of unknown function from the budding yeast Saccharomyces cerevisiae; P25, the pap1-dependent protein of the fission yeast Schizosaccharomyces pombe; and the translation product of a partial cDNA sequence from rice seedling root (Oryza sativa, locus Ricr02421a; here referred to as RicR). Further homology search with the profile method indicates that all the above sequences are related to the flavodoxin family and, in turn, allows detection of the recently proposed flavodoxin-like proteins from E. coli, MioC and the hypothetical protein YihB. We discuss sequence conservation with reference to the known 3-dimensional structures of flavodoxins. Conserved sequence and hydrophobicity patterns, as well as residue-pair interaction potentials, strongly support the hypothesis that these proteins share the alpha/beta twisted open-sheet fold typical of flavodoxins, with an additional alpha/beta unit in the WrbA family. On the basis of the proposed structural homology, we discuss the details of the putative FMN-binding sites. Our analysis also suggests that the helix-turn-helix motif we identified previously in the C-terminal region of the WrbA family is unlikely to reflect a DNA-binding function of this new protein family.  相似文献   

16.
The side chain of aspartate 95 in flavodoxin from Desulfovibrio vulgaris provides the closest negative charge to N(1) of the bound FMN in the protein. Site-directed mutagenesis was used to substitute alanine, asparagine, or glutamate for this amino acid to assess the effect of this charge on the semiquinone/hydroquinone redox potential (E(1)) of the FMN cofactor. The D95A mutation shifts the E(1) redox potential positively by 16 mV, while a negative shift of 23 mV occurs in the oxidized/semiquinone midpoint redox potential (E(2)). The crystal structures of the oxidized and semiquinone forms of this mutant are similar to the corresponding states of the wild-type protein. In contrast to the wild-type protein, a further change in structure occurs in the D95A mutant in the hydroquinone form. The side chain of Y98 flips into an energetically more favorable edge-to-face interaction with the bound FMN. Analysis of the structural changes in the D95A mutant, taking into account electrostatic interactions at the FMN binding site, suggests that the pi-pi electrostatic repulsions have only a minor contribution to the very low E(1) redox potential of the FMN cofactor when bound to apoflavodoxin. Substitution of D95 with glutamate causes only a slight perturbation of the two one-electron redox potentials of the FMN cofactor. The structure of the D95E mutant reveals a large movement of the 60-loop (residues 60-64) away from the flavin in the oxidized structure. Reduction of this mutant to the hydroquinone causes the conformation of the 60-loop to revert back to that occurring in the structures of the wild-type protein. The crystal structures of the D95E mutant imply that electrostatic repulsion between a carboxylate on the side chain at position 95 and the phenol ring of Y98 prevents rotation of the Y98 side chain to a more energetically favorable conformation as occurs in the D95A mutant. Replacement of D95 with asparagine has no effect on E(2) but causes E(1) to change by 45 mV. The D95N mutant failed to crystallize. The K(d) values of the protein FMN complex in all three oxidation-reduction states differ from those of the wild-type complexes. Molecular modeling showed that the conformational energy of the protein changes with the redox state, in qualitative agreement with the observed changes in K(d), and allowed the electrostatic interactions between the FMN and the surrounding groups on the protein to be quantified.  相似文献   

17.
Chen E  Swartz TE  Bogomolni RA  Kliger DS 《Biochemistry》2007,46(15):4619-4624
Light-, oxygen-, or voltage-regulated (LOV1 and LOV2) domains bind flavin mononucleotide (FMN) and activate the phototropism photoreceptors phototropin 1 (phot1) and phototropin 2 (phot2) by using energy from absorbed blue light. Upon absorption of blue light, chromophore and protein conformational changes trigger the kinase domain for subsequent autophosphorylation and presumed downstream signal transduction. To date, the light-induced photocycle of the phot1 LOV2 protein is known to involve formation of a triplet flavin mononucleotide (FMN) chromophore followed by the appearance of a FMN adduct within 4 micros [Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., and Bogomolni, R. A. (2001) J. Biol. Chem. 276, 36493-36500] before thermal decay back to the dark state. To probe the mechanism by which the blue light information is relayed from the chromophore to the protein, nanosecond time-resolved optical rotatory dispersion (TRORD) spectroscopy, which is a direct probe of global secondary structure, was used to study the phot1 LOV2 protein in the far-UV region. These TRORD experiments reveal a previously unobserved intermediate species (tau approximately 90 micros) that is characterized by a FMN adduct chromophore and partially unfolded secondary structure (LOV390(S2)). This intermediate appears shortly after the formation of the FMN adduct. For LOV2, formation of a long-lived species that is ready to interact with a receptor domain for downstream signaling is much faster by comparison with formation of a similar species in other light-sensing proteins.  相似文献   

18.
19.
Desulfovibrio vulgaris apoflavodoxin has been reconstituted with 15N and 13C-enriched riboflavin 5'-phosphate. For the first time all carbon atoms of the isoalloxazine ring of the protein-bound prosthetic group have been investigated. The reconstituted protein was studied in the oxidized and in the two-electron-reduced state. The results are interpreted in terms of specific interactions between the apoprotein and the prosthetic group, and the chemical structure of protein-bound FMN. In the oxidized state weak hydrogen bonds exist between the apoprotein and the N(5), N(3) and O(4 alpha) atoms of FMN. The N(1) and O(2 alpha) atoms of FMN form strong hydrogen bonds. The isoalloxazine ring of FMN is strongly polarized and the N(10) atom shows an increased sp2 hybridisation compared to that of free FMN in aqueous solution. The N(3)-H group is not accessible to bulk solvent, as deduced from the coupling constant of the N(3)-H group. In the reduced state the hydrogen bond pattern is similar to that in the oxidized state and in addition a strong hydrogen bond is observed between the N(5)-H group of FMN and the apoprotein. The reduced prosthetic group possesses a coplanar structure and is ionized. The N(3)-H and N(5)-H groups are not accessible to solvent water. Two-electron reduction of the protein leads to a large electron density increase in the benzene subnucleus of bound FMN compared to that in free FMN. The results are discussed in relation to the published crystallographic data on the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号