首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elucidating protein structure in amorphous solids is central to the rational design of stable lyophilized protein drugs. Hydrogen/deuterium (H/D) exchange with electrospray ionization mass spectrometry was applied to lyophilized powders containing calmodulin (17 kDa) and exposed to D(2)O vapor at controlled relative humidity (RH) and temperature. H/D exchange was influenced by RH and by the inclusion of calcium chloride and/or trehalose in the solid. The effects were not exhibited uniformly along the protein backbone but occurred in a site-specific manner, with calcium primarily influencing the calcium-binding loops and trehalose primarily influencing the alpha-helices. The results demonstrate that the method can provide quantitative and site-specific structural information on proteins in amorphous solids and on changes in structure induced by protein cofactors and formulation excipients. Such information is not readily available with other techniques used to characterize proteins in the solid state, such as Fourier transform infrared, Raman, and near-infrared spectroscopy.  相似文献   

2.
Conformational changes and protein dynamics play an important role in the catalytic efficiency of enzymes. Amide H/D exchange mass spectrometry (H/D exchange MS) is emerging as an efficient technique to study the local and global changes in protein structure and dynamics due to ligand binding, protein activation-inactivation by modification, and protein-protein interactions. By monitoring the selective exchange of hydrogen for deuterium along a peptide backbone, this sensitive technique probes protein motions and structural elements that may be relevant to allostery and function. In this report, several applications of H/D exchange MS are presented which demonstrate the unique capability of amide hydrogen/deuterium exchange mass spectrometry for examining dynamic and structural changes associated with enzyme catalysis.  相似文献   

3.
We describe methods for minimization of and correction for artifactual forward and backward exchange occurring during hydrogen exchange-mass spectrometric (HX-MS) studies of amyloid fibrils of the Abeta(1-40) peptide. The quality of the corrected data obtained using published and new correction algorithms is evaluated quantitatively. Using the new correction methods, we have determined that 20.1 +/- 1.4 of the 39 backbone amide hydrogens in Abeta(1-40) exchange with deuteriums in 100 h when amyloid fibrils of this peptide are suspended in D(2)O. These data reinforce our previous conclusions based on uncorrected data that amyloid fibrils contain a rigid protective core structure that involves only about half of the Abeta backbone amides. The methods developed here should be of general value for HX-MS studies of amyloid fibrils and other protein aggregates.  相似文献   

4.
Covalently linked pairs of well-chosen peptides can be good model systems for protein folding studies because they can adopt stable secondary, side-chain, and tertiary structure under certain conditions. We demonstrate a method for characterizing the structure in such peptide pairs by hydrogen/deuterium exchange of individual amide groups analyzed by collision-induced dissociation tandem mass spectrometry, in concert with circular dichroism spectroscopy. We apply the method to two peptides (and their three possible pairs) from bovine pancreatic trypsin inhibitor to address specific hypotheses regarding the stabilization of local secondary structure by long-range interactions.  相似文献   

5.
Mazon H  Marcillat O  Forest E  Vial C 《Biochimie》2005,87(12):1101-1110
Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).  相似文献   

6.

Background

Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation.

Results

Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com.

Conclusion

Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX-MS by providing an intuitive workflow and interface for data analysis.  相似文献   

7.
Employing membrane-inlet mass spectrometry, direct evidence is presented that substrate amounts of hydrogen are simultaneously produced and consumed during the metabolism of pyruvate plus sulfate by washed intact cells of Desulfovibrio vulgaris (Hildenborough). The results clearly demonstrate that hydrogen cycling is an important bioenergetic mechanism for this sulfate-reducing bacterium when growing on pyruvate plus sulfate.  相似文献   

8.
Viral capsids are dynamic protein assemblies surrounding viral genomes. Despite the high-resolution structures determined by X-ray crystallography and cryo-electron microscopy, their in-solution structure and dynamics can be probed by hydrogen exchange. We report here using hydrogen exchange combined with protein enzymatic fragmentation and mass spectrometry to determine the capsid structure and dynamics of a human rhinovirus, HRV14. Capsid proteins (VP1-4) were labeled with deuterium by incubating intact virus in D(2)O buffer at neutral pH. The labeled proteins were digested by immobilized pepsin to give peptides analyzed by capillary reverse-phase HPLC coupled with nano-electrospray mass spectrometry. Deuterium levels incorporated at amide linkages in peptic fragments were measured for different exchange times from 12 sec to 30 h to assess the amide hydrogen exchange rates along each of the four protein backbones. Exchange results generally agree with the crystal structure of VP1-4,with extended, flexible terminal and surface-loop regions in fast exchange and folded helical and sheet structures in slow exchange. In addition, three alpha-helices, one from each of VP1-3, exhibited very slow exchange, indicating high stability of the protomeric interface. The beta-strands at VP3 N terminus also had very slow exchange, suggesting stable pentamer contacts. It was noted, however, that the interface around the fivefold axis had fast and intermediate exchange, indicating relatively more flexibility. Even faster exchange rates were found in the N terminus of VP1 and most segments of VP4, suggesting high flexibilities, which may correspond to their potential roles in virus uncoating.  相似文献   

9.
Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150–600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes.  相似文献   

10.
Molecular dynamics (MD) simulations on a bacterial cytochrome c were performed to investigate the lifetime and fluctuations of backbone hydrogen bonds and to correlate these data with protection factors for hydrogen exchange measured by NMR spectroscopy (Bartalesi et al. in Biochemistry, 42:10923–10930, 2003). The MD simulations provide a consistent pattern in that long lifetimes of hydrogen bonds go along with small amplitude fluctuations. In agreement with experiments, differences in stability were found with a rather flexible N-terminal segment as compared with a more rigid C-terminal part. Protection factors of backbone hydrogen exchange correlate strongly with the number of contacts but also with hydrogen-bond occupancy, hydrogen-bond survival times, as well as the inverse of fluctuations of backbone atoms and hydrogen-bond lengths derived from MD simulation data. We observed a conformational transition in the C-terminal loop, and significant motion in the N-terminal loop, which can be interpreted as being the structural units involved in the onset of the protein unfolding process in agreement with experimental evidence on mitochondrial cytochrome c. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Gernot Kieseritzky and Giulia Morra both contributed equally to this work.  相似文献   

11.
Recombinant monoclonal antibodies (MAbs) have become one of the most rapidly growing classes of biotherapeutics in the treatment of human disease. MAbs are highly heterogeneous proteins, thereby requiring a battery of analytical technologies for their characterization. However, incompatibility between separation and subsequent detection is often encountered. Here we demonstrate the utility of a generic on-line liquid chromatography–mass spectrometry (LC-MS) method operated in a two-dimensional format toward the rapid characterization of MAb charge and size variants. Using a single chromatographic system capable of running two independent gradients, up to six fractions of interest from an ion exchange (IEC) or size exclusion (SEC) separation can be identified by trapping and desalting the fractions onto a series of reversed phase trap cartridges with subsequent on-line analysis by mass spectrometry. Analysis of poorly resolved and low-level peaks in the IEC or SEC profile was facilitated by preconcentrating fractions on the traps using multiple injections. An on-line disulfide reduction step was successfully incorporated into the workflow, allowing more detailed characterization of modified MAbs by providing chain-specific information. The system is fully automated, thereby enabling high-throughput analysis with minimal sample handling. This technology provides rapid data turnaround time, a much needed feature during product characterization and development of multiple biotherapeutic proteins.  相似文献   

12.
Crosslinking mass spectrometry captures protein structures in solution. The crosslinks reveal spatial proximities as distance restraints, but do not easily reveal which of these restraints derive from the same protein conformation. This superposition can be reduced by photo-crosslinking, and adding information from protein structure models, or quantitative crosslinking reveals conformation-specific crosslinks. As a consequence, crosslinking MS has proven useful already in the context of multiple dynamic protein systems. We foresee a breakthrough in the resolution and scale of studying protein dynamics when crosslinks are used to guide deep-learning-based protein modelling. Advances in crosslinking MS, such as photoactivatable crosslinking and in-situ crosslinking, will then reveal protein conformation dynamics in the cellular context, at a pseudo-atomic resolution, and plausibly in a time-resolved manner.  相似文献   

13.
Backbone dynamics of the camphor monoxygenase cytochrome P450(cam) (CYP101) as a function of oxidation/ligation state of the heme iron were investigated via hydrogen/deuterium exchange (H/D exchange) as monitored by mass spectrometry. Main chain amide NH hydrogens can exchange readily with solvent and the rate of this exchange depends upon, among other things, dynamic fluctuations in local structural elements. A fluxional region of the polypeptide will exchange more quickly with solvent than one that is more constrained. In most regions of the enzyme, exchange rates were similar between oxidized high-spin camphor-bound and reduced camphor- and CO-bound CYP101 (CYP-S and CYP-S-CO, respectively). However, in regions of the protein that have previously been implicated in substrate access by structural and molecular dynamics investigations, the reduced enzyme shows significantly slower exchange rates than the oxidized CYP-S. This observation corresponds to increased flexibility of the oxidized enzyme relative to the reduced form. Structural features previously found to be perturbed in CYP-S-CO upon binding of the biologically relevant effector and reductant putidaredoxin (Pdx) as determined by nuclear magnetic resonance are also more protected from exchange in the reduced state. To our knowledge, this study represents the first experimental investigation of backbone dynamics within the P450 family using this methodology.  相似文献   

14.
Xin Chen  Ying Ge 《Proteomics》2013,13(17):2563-2566
Top‐down MS‐based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top‐down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size‐based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high‐resolution separation of intact proteins for top‐down proteomics. Fast separation of intact proteins (6–669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP‐SEC provides high‐resolution separation of intact proteins using a MS‐friendly volatile solvent system, allowing the direct top‐down MS analysis of SEC‐eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP‐SEC is an attractive LC strategy for the size separation of proteins with great potential for top‐down proteomics.  相似文献   

15.
A method for quantitative proteomic analysis based on the selective isolation of multiply charged peptides (RH peptides) containing arginine and histidine residues is described. Two pools of proteins are digested in tandem with lysyl-endopeptidase and trypsin and the primary amino groups of proteolytic peptides are separately labeled with d3- and d0-acetic anhydride. This reaction has a dual purpose: (i) to allow the relative protein quantification in two different conditions and (ii) to restrict the positive charges of peptides to the presence of arginine and histidine. The N-acylated peptides are separated by cation-exchange chromatography into two groups, neutral and singly charged peptides (R+H1) are retained into the column and can be eluted in batch or further fractionated using a saline gradient before LC-MS/MS analysis. In silico analysis revealed that the selective isolation of RH peptides considerably simplifies the complex mixture of peptides (three RH peptides/protein) and at the same time they represent 84% of the whole proteomes. The selectivity, and recovery of the method were evaluated with model proteins and with a complex mixture of proteins extracted from Vibrio cholerae.  相似文献   

16.
A novel system for characterizing complex N-linked oligosaccharide mixtures that uses a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), capillary electrophoresis (CE), and high-performance liquid chromatography (HPLC) has been developed. In this study, oligosaccharides released from recombinant TNK-tPA (tissue plasminogen activator) were derivatized with 5-amino-2-naphthalenesulfonic acid (ANSA). The negative charge imparted by the ANSA label facilitated the analysis of the oligosaccharides by MALDI-TOF MS by allowing the observation of both neutral and sialylated oligosaccharides in a single negative ion mode spectrum. Labeling with ANSA was also determined to be advantageous in the characterization of oligosaccharides by both HPLC and CE. The ANSA label was demonstrated to provide superior resolution over the commonly used label 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in both the CE and HPLC analysis of oligosaccharides. To date, no other labels that enable the analysis of complex oligosaccharide mixtures in a single mass spectral mode, while also enabling high-resolution chromatographic and electrophoretic separation of the oligosaccharides, have been reported. By integrating the structural information obtained by MALDI-TOF MS analysis with the ability of CE and HPLC to discriminate between structural isomers, the complete characterization of complex oligosaccharide mixtures is possible.  相似文献   

17.
The effect on primary, secondary, tertiary and quaternary structure of Pseudozyma (formerly Candida) antarctica lipase B (PalB) on exposure to hydrogen peroxide was investigated using nano-electrospray ionization-mass spectrometry (nano-ESI-MS), liquid chromatography tandem mass spectrometry (LC/MS/MS), circular dichroism (CD), and dynamic light scattering (DLS). Treatment with hydrogen peroxide generated heavier protein variants, with a mass gain that increased with increasing incubation time. Furthermore, elevated concentration of H2O2 was shown to result in partial fragmentation of the protein. Proteolytic digestion of the enzyme gave primary sequence coverage of more than 90%, revealing oxidation of methionine, tryptophan and cystine residues. The active site histidine was not observed in oxidized form in any of the experiments. However, oxidation of cystine to cysteic acid indicated disruption of disulphide bridges, and CD evaluations confirmed that severe changes to the secondary structure towards random coil had occurred. The structural changes could be an effect of the observed amino acid side chain oxidations, and was correlated with deactivation of the lipase. From DLS experiments, it was seen that the lipase exposed to both high temperature and H2O2 formed large and intermediate sized aggregates, not observed for the heat-treated enzyme. The findings reported here could lay the basis for developing enzyme variants with higher oxidative stability.  相似文献   

18.
Peptide interaction is normally monitored by liquid chromatography (LC), liquid chromatography coupled to mass spectrometry (LC-MS), mass spectrometric (MS) methods such as MALDI-TOF/MS or capillary electrophoresis (CE). These analytical techniques need to apply either high pressure or high voltages, which can cause cleavage of newly formed bondages. Therefore, near infrared reflectance spectroscopy (NIRS) is presented as a rapid alternative to monitor the interaction of glutathione and oxytocin, simulating physiological conditions. Thereby, glutathione can act as a nucleophile with oxytocin forming four new conjugates via a disulphide bondage. Liquid chromatography coupled to UV (LC-UV) and mass spectrometry via an electrospray ionisation interface (LC-ESI-MS) resulted in a 82% and a 78% degradation of oxytocin at pH 3 and a 5% and a 7% degradation at pH 6.5. Capillary electrophoresis employing UV-detection (CE-UV) showed a 44% degradation of oxytocin. LC and CE in addition to the NIRS are found to be authentic tools for quantitative analysis. Nevertheless, NIRS proved to be highly suitable for the detection of newly formed conjugates after separating them on a thin layer chromatography (TLC) plate. The recorded fingerprint in the near infrared region allows for a selective distinct qualitative identification of conjugates without the need for expensive instrumentation such as quadrupole or MALDI-TOF mass spectrometers. The performance of the established NIRS method is compared to LC and CE; its advantages are discussed in detail.  相似文献   

19.
The abundance profile of the human urinary proteome is known to change as a result of diseases or drug toxicities, particularly of those affecting the kidney and the urogenital tract. A consequence of such insults is the ability to identify proteins in urine, which may be useful as quantitative biomarkers. To succeed in discovering them, reproducible urine sample preparation methods and good protein resolution in two-dimensional electrophoresis (2-DE) gels for parallel semiquantitative protein measurements are desirable. Here, we describe a protein fractionation strategy enriching proteins of molecular masses (M(r)) lower than 30 kDa in a fraction separate from larger proteins. The fraction containing proteins with M(r)s higher than 30 kDa was subsequently subjected to immunoaffinity subtraction chromatography removing most of the highly abundant albumin and immunoglobulin G. Following 2-DE display, superior protein spot resolution was observed. Subsequent high-throughput mass spectrometry analysis of ca. 1400 distinct spots using matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting and liquid chromatography-electrospray ionization tandem mass spectrometry lead to the successful identification of 30% of the proteins. As expected from high levels of post-translational modifications in most urinary proteins and the presence of proteolytic products, ca. 420 identified spots collapsed into 150 unique protein annotations. Only a third of the proteins identified in this study are described as classical plasma proteins in circulation, which are known to be relatively abundant in urine despite their retention to a large extent in the glomerular blood filtration process. As a proof of principle that our urinary proteome display effort holds promise for biomarker discovery, proteins isolated from the urine of a renal cell carcinoma patient were profiled prior to and after nephrectomy. Particularly, the decrease in abundance of the kininogen 2-DE gel spot train in urine after surgery was striking.  相似文献   

20.
A method utilizing thermospray high-performance liquid chromatography/mass spectrometry for the separation and direct analysis of carnitine, acetylcarnitine, and propionylcarnitine is described. On-column analysis of mixtures of the acylcarnitines with their corresponding stable, isotope-labeled analogs at nanomolar concentrations has indicated that isotope dilution assays can be applied towards the analysis of carnitine and short-chain acylcarnitines present in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号