首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The article summarizes the results of recent studies on the metabolism of 10-ethylestr-4-ene-3,17-dione, 10-[(1R)-1-hydroxyethyl]-,and 10-[(1S)-1-hydroxyethyl]estr-4-ene-3, 17-dione, in placenta. These compounds are the 19-methyl analogs of androstenedione, 19-hydroxyandrostenedione, and 19-oxoandrostenedione, respectively. No conversion of 10-ethylestr-4-ene-3,17-dione to either estrogens or oxygenated metabolites was detected. Both 10-[(1R)-1-hydroxyethyl]- and 10-[(1S)-1-hydroxyethyl]estr-4-ene-3, 17-dione were oxygenated to 10-(1,1-dihydroxyethyl)estr-4-ene-3,17-dione and isolated following in situ dehydration as 10-acetylestr-4-ene-3,17-dione. Evidence for the involvement of aromatase in these conversions is discussed. No conversion of 10-acetylestr-4-ene-3,17-dione to either estrogens or other oxygenated products was detected. These results lead us to propose a new mechanism for the third aromatase monooxygenation. We propose that the third oxygenation is initiated by 1β-hydrogen abstraction at C1 of 19,19-dihydroxyandrostenedione, followed by homolytic cleavage of the C10−C19 bond with concurrent formation of a Δ1(10),4−3-ketosteroid and a C19 carbon radical, and terminated by oxygen rebound at C19.  相似文献   

2.
Suspension of cultured cells of Marchantia polymorpha have the potential to hydrogenate the olefinic bonds present in androst-1,4-dien-3,17-dione (boldione, 1) to afford dihydroandrost-3,17-dione derivatives including: androst-4-ene-3,17-dione (androstenedione, 4-AD, 2), 5α-androstane-3,17-dione (androstenedione, AD, 4), and the less abundant metabolite 5α-androst-1-ene-3,17-dione (1-androstenedione, 1-AD, 3). After isolation and purification, these metabolites were characterized on the basis of spectroscopic analyses using 1D and 2D NMR as well as mass spectrometry. Cytotoxicity of the biotransformation products against breast adenocarcinoma cells (MCF-7) was assessed by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and cell death (apoptosis or necrosis) was assayed by acridine orange/ethidium bromide staining. Aromatase (cytochrome P450 19 enzyme, CYP19) inhibitory activity was measured by a tritiated water release assay and by direct measurement of bio-transformed steroids using the tritium labeled substrate 3H-androst-4-ene-3,17-dione. CYP19 mRNA expression in MCF-7 cells was analyzed by real-time PCR. Steroidal products 3 and 4 revealed a highly significant inhibition of MCF-7 cell growth that was predominantly due to apoptosis not necrosis. Steroidal products 3 and 4 are both potent inhibitors of aromatase activity and CYP19 mRNA expression, while 2 is a known substrate for aromatase. These data establish that metabolites 3 and 4 are potent chemical agents against breast cancer via aromatase inhibitory mechanism. Results were interpreted via virtual docking of the biotransformation products to the human placental aromatase active site.  相似文献   

3.
Suicide substrates of aromatase were used as chemical probes to determine if free 19-hydroxyandrost-4-ene-3,17-dione (19-OHA) and 19-oxoandrost-4-ene-3,17-dione (19-oxoA) are obligatory intermediates in the aromatization of androst-4-ene-3,17-dione (androstenedione) to oestrone by human placental aromatase. A radiometric-HPLC assay was used to monitor 19-hydroxy, 19-oxo-, and aromatized products formed in incubations of [14C]androstenedione and human placental microsomes. When microsomes were preincubated with the suicide substrates 10 beta-mercapto-estr-4-ene-3,17-dione (10 beta-SHnorA), or 17 beta-hydroxy-10 beta-mercaptoestr-4-ene-3-one (10 beta-SHnorT), it was found that 19-hydroxy-, 19-oxo- and aromatase activities were inhibited in parallel. However, when the suicide substrates 4-hydroxyandrost-4-ene-3,17-dione (4-OHA) and 19-mercaptoandrost-4-ene-3,17-dione (19-SHA) were preincubated with placental microsomes, significantly greater inhibition of formation of oestrogens was observed in comparison to the inhibition of formation of 19-hydroxy- and 19-oxo-metabolites. Furthermore, significantly more time-dependent inhibition of 19-oxoA formation was observed in comparison to inhibition of 19-OHA formation with these same inhibitors. These results suggest that 19-hydroxy- and 19-oxo-androstenediones are not free, obligatory intermediates in the aromatization of androstenedione by human placental aromatase, but rather are products of their own autonomous cytochrome P-450-dependent, microsomal enzymatic activities.  相似文献   

4.
7-Phenyl-1,4,6-androstatriene-3,17-dione (4), 7-benzyl-1,4,6-androstatriene-3,17-dione (5) and 7-phenethyl-1,4,6-androstatriene-3,17-dione (6) were synthesized and evaluated in vitro in human placental microsomes as enzyme-activated irreversible inhibitors of aromatase. The compounds were synthesized from appropriate 7-substituted 4,6-androstadiene-3,17-diones by reaction with DDQ under neutral conditions. All the compounds produced a first order inactivation of aromatase in the presence of NADPH but not in the absence of NADPH. Substrate 4-androstene-3,17-dione protected the enzyme from inactivation by the inhibitors. Furthermore, cysteine failed to protect aromatase from inactivation by compounds 5 and 6. In contrast, cysteine partially protected aromatase from inactivation by compound 4. Irreversibility studies illustrated the covalent nature of the inactivation by 4, 5 and 6. The above experimental evidence demonstrated that compounds 5 and 6 are effective enzyme-activated irreversible inhibitors of aromatase.  相似文献   

5.
R A Meigs 《Life sciences》1990,46(5):321-327
All oxidative functions of aromatase, i.e., estrogen production, 19-oxygenated androgen production and 7-ethoxycoumarin deethylation, were inhibited in parallel in placental microsomes from non-smokers by the mechanism-based, time-dependent inactivators (suicide substrates) 10 beta-(2-propynyl)estr-4-ene-3,17-dione and 4-hydroxyandrost-4-ene-3,17-dione. In contrast, the aromatase suicide substrate androst-4-ene-3,6,17-trione had little or no effect on the conversion of androst-4-ene-3,17-dione to 19-hydroxyandrost-4-ene-3,17-dione or on the conversion of the latter to 3,17-dioxoandrost-4-en-19-al while severely limiting the capacity for estrogen production from androst-4-ene-3,17-dione and 19-hydroxyandrost-4-ene-3,17-dione in such microsomal preparations. Androst-4-ene-3,6,17-trione, therefore, appears to uncouple the 19-hydroxylation of androgens from estrogen synthesis. This agent also produced only a minimal inhibition of 7-ethoxycoumarin deethylation, indicating that this major constitutive transformation of a xenobiotic chemical is associated with the steroid 19-hydroxylating function of the aromatase system.  相似文献   

6.
Metabolism of 19-methyl-substituted steroids by human placental aromatase   总被引:3,自引:0,他引:3  
D D Beusen  H L Carrell  D F Covey 《Biochemistry》1987,26(24):7833-7841
The 19-methyl analogues of androstenedione and its aromatization intermediates (19-hydroxyandrostenedione and 19-oxoandrostenedione) were evaluated as substrates of microsomal aromatase in order to determine the effect of a 19-alkyl substituent on the enzyme's regiospecificity. Neither the androstenedione analogue [10-ethylestr-4-ene-3,17-dione (1c)] nor the 19-oxoandrostenedione analogue [10-acetylestr-4-ene-3,17-dione (3c)] was converted to estrogens or oxygenated metabolites by placental microsomes. In contrast, both analogues of 19-hydroxyandrostenedione [10-[(1S)-1-hydroxyethyl]estr-4-ene-3,17-dione (2c) and 10-[(1R)-1-hydroxyethyl]estr-4-ene-3,17-dione (2e)] were converted to the intermediate analogue 3c in a process requiring O2 and either NADH or NADPH. No change in enzyme regiospecificity was detected. The absolute configuration of 2e was determined by X-ray crystallography. Experiments with 18O2 established that 3c generated from 2c retained little 18O (less than 3%), while 3c arising from 2e retained a significant amount of 18O (approximately equal to 70%). All four 19-methyl steroids elicited type I difference spectra from placental microsomes in addition to acting as competitive inhibitors of aromatase (KI = 81 nM, 11 microM, 9.9 microM, and 150 nM for 1c, 2c, 2e, and 3c, respectively). Pretreatment of microsomes with 4-hydroxyandrostenedione (a suicide inactivator of aromatase) abolished the metabolism of 2c and 2e to 3c, as well as the type I difference spectrum elicited by 2c and 2e.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The constitutive 7-ethoxycoumarin deethylase activity of human placental microsomes from non-smokers was acutely inhibited by a number of androgens which serve as substrates for and/or competitive inhibitors of estrogen synthesis by the aromatase activity of these preparations. 10 beta-(2-Propynyl)estr-4-ene-3,17-dione and 4-hydroxyandrost-4-ene-3,17-dione, androgen derivatives which produce a mechanism-based, time-dependent inactivation of placental aromatase caused a cofactor-dependent decay in deethylase activity which paralleled the loss of aromatase activity caused by these agents and which was antagonized by aromatase substrates. Conversely, 7-ethoxycoumarin antagonized the time-dependent action of 10 beta-(2-propynyl)estr-4-ene-3,17-dione and 4-hydroxyandrost-4-ene-3,17-dione on aromatase and inhibited competitively the aromatization of 4-androstene-3,17-dione. The Ki for 7-ethoxycoumarin was equivalent to its Km as substrate for deethylation. It is concluded that a common oxidase species is responsible for both the aromatase and constitutive 7-ethoxycoumarin deethylase activities of human placental microsomes.  相似文献   

8.
The localization and some characteristics of mouse adrenal C19-steroid 5 beta-reductase were determined by the incubation of subcellular fractions of mouse adrenal tissue with [7 alpha-3H]androst-4-ene-3,17-dione. This enzyme was present only in the soluble fraction and was NADPH-dependent, although a small activity in the presence of NADH was also detected. The soluble fraction also contained 3alpha-, 3beta- and a small amount of 17 beta-hydroxy steroid dehydrogenase. These and other steroid-metabolizing enzymes present in the remaining subcelluar fractions are also described briefly. To measure 5 beta-androstane-3,17-dione production by the mouse adrenal soluble fraction, all 5 beta products first had to be oxidized to 5 beta-androstane-3,17-dione, and the recovery of radio-activity between the substrate androst-4-ene-3,17-dione and product 5 beta-androstane-3,17-dione of 96.1 +/-3.2% validated this technique. C19-steroid 5 beta-reductase has a pH optimum of 6.5 and at low substrate concentrations the Km and Vmax. for 5 beta reduction of [7 alpha-3H]androst-4-ene-ene-3,17-dione was 2.22 times 10(-6) "/- 0.48 times 10(-6) M and 450+/- 53 pmol/min per mg of protein respectively. At high substrate concentration, inhibition of the reaction occurred, which was shown to be due to increasing product concentration.  相似文献   

9.
The conversion of a molecule of 19-oxoandrost-4-ene-3,17-dione [1a] to estrone [2a] by human placental aromatase requires a molecule of oxygen and of NADPH. An atom of this molecule of oxygen is incorporated into the extruded formic acid derived from C-19 of [1a]. It was proposed that the 02 is utilized for the enzymatic 2β-hydroxylation of [1a] and the released intermediate 2β-hydroxy-19-oxoandrost-4-ene-3, 17-dione [5a]aromatizes nonenzymatically. Should [5a] be an obligatory intermediate of estrogen biosynthesis, then all the oxygen of its 2β-hydroxyl must be incorporated into the extruded formic acid. We have previously synthesized [2β-180;19-3H][5c] and proved that none of its 2β-180 was incorporated in the formic acid extruded in the aromatization. On this basis we concluded that [5a] can not be an obligatory precursor of estrogen biosynthesis.

The trapping of radioactive androst-4-ene-2β,3β,17β,19-tetrol in a reductively terminated incubation of a mixture of radioactive androst-4-ene-3, 17-dione and [5a] with crude placental aromatase was interpreted as evidence in support of the intermediacy of [5a]. We confirmed that the tetrol can indeed be trapped in the reductively terminated incubations. However, considering that the crude placental enzyme preparation very likely contains numerous activated oxygen species capable of a variety of oxidation reactions, most of which may not be related to estrogen elaboration, and in view of our results quoted above, the origin and the eventual biosynthetic role of the parent compound of the tetrol remains to be determined.  相似文献   


10.
Nagaoka M  Numazawa M 《Steroids》2005,70(12):831-839
Aromatase is a cytochrome P-450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione (AD) to estrone through three sequential oxidations of the 19-methyl group. 3-DeoxyAD (1) and its 5-ene isomer 4 are potent and good competitive aromatase inhibitors, which are converted by aromatase to the aldehyde derivatives 3 and 6, respectively, through 19-hydroxy intermediates 2 and 5, respectively. To study the deuterium isotope effect on the conversions of 19-ols 2 and 5 into the corresponding 19-als 3 and 6, we initially synthesized [19,19-(2)H(2)]19-ols 2 and 5 starting from the corresponding non-labeled 19-als 3 and 6 through NaB(2)H(4) reduction of the 19-aldehyde group, followed by oxidation with pyridinium dichromate, and a subsequent NaB(2)H(4) reduction. Approximately 1:1 mixtures of non-labeled (d(0)) and deuterated (d(2)) 19-ols 2 and 5 were separately incubated with human placental microsomes in the presence of NADPH under an air atmosphere, and deuterium contents of the recovered substrates and the 19-aldehyde products were determined by gas chromatography-mass spectrometry. In each experiment, the ratio of d(0) to d(2) of the recovered substrate along with that of d(0) to d(1) of the product were identical to the d(0) to d(2) ratio of the employed substrate irrespective of the incubation time, indicating that the 19-oxygenations of the 3-deoxy steroids 2 and 5 proceeded without a detectable isotope effect, as seen in the aromatization sequence of the natural substrate AD.  相似文献   

11.
The inhibition of aromatase, the enzyme responsible for converting androgens to estrogens, is therapeutically useful for the endocrine treatment of hormone-dependent breast cancer. Research by our laboratory has focused on developing competitive and irreversible steroidal aromatase inhibitors, with an emphasis on synthesis and biochemistry of 7α-substituted androstenediones. Numerous 7α-thiosubstituted androst-4-ene-3,17-diones are potent competitive inhibitors, and several 1,4-diene analogs, such as 7α-(4′-aminophenylthio)-androsta-1,4-diene-3,17-dione (7α-APTADD), have demonstrated effective enzyme-activated irreversible inhibition of aromatase in microsomal enzyme assays. One focus of current research is to examine the effectiveness and biochemical pharmacology of 7α-APTADD in vivo. In the hormone-dependent 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary carcinoma model system, 7α-APTADD at a 50 mg/kg/day dose caused an initial decrease in mean tumor volume during the first week, and tumor volume remained unchanged throughout the remaining 5-week treatment period. This agent lowers serum estradiol levels and inhibits ovarian aromatase activity. A second research area has focused on the synthesis of more metabolically stable inhibitors by replacing the thioether linkage at the 7α position with a carbon-carbon linkage. Several 7α-arylaliphatic androst-4-ene-3,17-diones were synthesized by 1,6-conjugate additions of appropriate organocuprates to a protected androst-4,6-diene or by 1,4-conjugate additions to a seco-A-ring steroid intermediate. These compounds were all potent inhibitors of aromatase with apparent Kis ranging between 13 and 19 nM. Extension of the research on these 7α-arylaliphatic androgens includes the introduction of a C1---C2 double bond in the A-ring to provide enzyme-activated irreversible inhibitors. The desired 7α-arylaliphatic androsta-1,4-diene-3,17-diones were obtained from their corresponding 7α-arylaliphatic androst-4-ene-3,17-diones by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). These inhibitors demonstrated enzyme-mediated inactivation of aromatase with apparent kinacts ranging from 4.4 × 10−4 to 1.90 x 10−3 s−1. The best inactivator of the series was 7α-phenpropylandrosta-1,4-diene-3,17-dione, which exhibited a T1/2 of 6.08 min. Aromatase inhibition was also observed in MCF-7 human mammary carcinoma cell cultures and in JAr human choriocarcinoma cell cultures, exhibiting IC50 values of 64-328 nM. The 7α-arylaliphatic androgens thus demonstrate potent inhibition of aromatase in both microsomal incubations and in choriocarcinoma cell lines expressing aromatase enzymatic activity. Additionally, the results from these studies provide further evidence for the presence of a hydrophobic binding pocket existing near the 7α-position of the steroid in the active site of aromatase. The size of the 7α-substituent influences optimal binding of steroidal inhibitors to the active site and affects the extent of enzyme-mediated inactivation observed with androsta-1,4-diene-3,17-dione analogs.  相似文献   

12.
Androst-4-en-3-one analogs incorporating a trimethylsilyl or a trimethylsilylmethyl group at C-1, C-2 or C-19 were prepared and evaluated as inhibitors of aromatase. Only 10-[1-hydroxy-2-(trimethylsilyl)ethyl]estr-4-ene-3,17-dione inhibited human placental aromatase. Enzyme kinetic analysis revealed competitive inhibition [apparent dissociation constant (Ki) of 562 +/- 12 nM] associated with marginal time-dependent inhibition.  相似文献   

13.
The location and some characteristics of rat adrenal C(19)-steroid 5alpha-reductase were investigated by using [7alpha-(3)H]androst-4-ene-3,17-dione and [7alpha-(3)H]testosterone as substrates. The enzymes system was shown to be NADPH-dependent and associated with the microsomal fraction. In addition, some evidence was also obtained for the existence of a separate NADH-dependent system in the soluble fraction. Further investigation of androst-4-ene-3,17-dione metabolism by subcellular fractions indicated the presence of NADH-dependent 3alpha- and 3beta-hydroxy steroid dehydrogenase systems in the microsomal pellet. This pellet also appeared to contain an NADH-dependent 17beta-hydroxy steroid dehydrogenase system, and a similar though separate system was detected in the cytosol. Malate (20mm) effectively inhibited the microsomal C(19)-steroid 5alpha-reductase, which showed similar values for K(m) and V(max.) when either androst-4-ene-3,17-dione or testosterone was used as substrate. Cytochrome c was added to all incubation mixtures used for the determination of these values to inhibit the formation of metabolites other than 5alpha-androstane-3,17-dione and 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) respectively. It was also found that corticosterone did not inhibit the 5alpha-reduction of androst-4-ene-3,17-dione under these conditions, indicating that separate enzymes exist for the 5alpha-reduction of C(19)- and C(21)-steroids in the rat adrenal.  相似文献   

14.
A three-dimensional (3-D) structure of human aromatase (CYP 19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys 119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles ofAsp309 and His480 in the aromatization of the steroid A ring.  相似文献   

15.
19-Mercaptoandrost-4-ene-3,17-dione (ORG 30365) has been reported to be both a competitive and irreversible inhibitor of aromatase. In comparison to the known aromatase inhibitors 4-hydroxy-androst-4-ene-3,17-dione (4OH-AD) and 1-methyl-1,4-androstadiene-3,17-dione (SH 489), ORG 30365 was found to be, respectively, about 16 and 8 times more active in vitro using human placental microsomes. Although the activity profile of ORG 30365 is very attractive, this compound was not selected for further development because it has limited pharmaceutical stability, which is probably due to its free--SH group and therefore a number of more stable dithio-derivatives of ORG 30365 have been synthesized. These derivatives are considered to be converted to ORG 30365 before they become active. The in vivo aromatase inhibiting activity of these derivatives was determined in hypophysectomized rats treated with the estrogen precursor dehydroepiandrosterone sulphate (DHEAS) using inhibition of cornification of vaginal epithelium as parameter. The 19-(ethyldithio)-derivative (ORG 30958) appeared to be the most active inhibitor in this series being twice as active as ORG 30365 and about 8 times as active as inhibitors like 4OH-AD and SH 489. Besides inhibition of cornification of vaginal epithelium ORG 30958 decreased ovarian aromatase and plasma E2 levels in DHEAS-treated hypophysectomized rats. Plasma estradiol levels were also lowered by ORG 30958 in dogs which were treated with pregnant mare serum gonadotrophin in order to induce pro-estrus. ORG 30958 displayed much less than 1/400th of the androgenic activity of testosterone propionate in immature castrated rats and appeared to be devoid of estrogenic and anti-estrogenic activity in ovariectomized mature rats. A twice daily dose of 1.5 mg ORG 30958/kg postponed ovulation in mature female rats. In conclusion: ORG 30958 is a potent aromatase inhibitor in vivo. It probably becomes active after cleavage of the -S-S- bond yielding ORG 30365 a potent irreversible aromatase inhibitor. ORG 30958 does not display other hormonal activities making it an attractive candidate for the treatment of estrogen-dependent diseases.  相似文献   

16.
17β-Hydroxy-10-methylthioestra-1,4-dien-3-one is an active-site irreversible inhibitor of aromatase, the cytochrome P-450 dependent enzyme responsible for the conversion of androst-4-ene-3,17-dione to estrone. Two time-dependent pathways to inactivation are observed, one of which requires NADPH activation.  相似文献   

17.
19-Nor-deoxycorticosterone is a newly recognized mineralocorticoid which has been associated with some forms of genetic, experimental, and human hypertension. To further examine this relationship, specific inhibitors of 19-nor-deoxycorticosterone biosynthesis must be developed. Since 19-hydroxylation is the pivotal step in both 19-nor-deoxycorticosterone biosynthesis and aromatization of androgens to estrogens, we evaluated an aromatase inhibitor, 4-hydroxyandrost-4-ene-3,17-dione on the inhibition of 19-hydroxylation in both rat and human adrenal mitochondria in vitro and 19-nor-deoxycorticosterone production and blood pressure in spontaneously hypertensive rats in vivo. Adrenal mitochondria from 48 male Sprague-Dawley rats and 1 patient with an aldosterone-producing adenoma were incubated in the presence of deoxycorticosterone substrate both with and without 4-hydroxyandrost-4-ene-3,17-dione. 4-Hydroxyandrost-4-ene-3,17-dione produced significant inhibition of 19-hydroxy-deoxycorticosterone production in both rat and human adrenal mitochondria, with a smaller and not significant inhibition of corticosterone and 18-hydroxy-corticosterone. 4-Hydroxyandrost-4-ene-3,17-dione given subcutaneously to spontaneously hypertensive rats lowered 19-nor-deoxycorticosterone by 69% and completely abolished hypertension compared to Wistar-Kyoto controls. These data demonstrate that 4-hydroxyandrost-4-ene-3,17-dione is a specific inhibitor of 19-hydroxylase, that it lowers 19-nor-deoxycorticosterone production and prevents hypertension in the spontaneously hypertensive rat. These studies reinforce the possible pathogenic significance of 19-nor-deoxycorticosterone in hypertension in spontaneously hypertensive rats.  相似文献   

18.
L A Xue  P Talalay  A S Mildvan 《Biochemistry》1991,30(45):10858-10865
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni catalyzes the conversion of androst-5-ene-3,17-dione to androst-4-ene-3,17-dione by a stereoselective transfer of the 4 beta-proton to the 6 beta-position. The rate-limiting step has been shown to be the concerted enolization of the enzyme-bound substrate comprising protonation of the 3-carbonyl oxygen by Tyr-14 and abstraction of the 4 beta-proton by Asp-38 [Xue, L., Talalay, P., & Mildvan, A. S. (1990) Biochemistry 29, 7491-7500]. Primary, secondary, solvent, and combined kinetic deuterium isotope effects have been used to investigate the mechanism of the Y14F mutant, which lacks the proton donor and is 10(4.7)-fold less active catalytically than the wild-type enzyme. With [4 beta-D]androst-5-ene-3,17-dione as a substrate in H2O, a lag in product formation is observed which approaches, by a first-order process, the rate observed with protonated substrate. With the protonated substrate in D2O, a burst in product formation is detected by derivative analysis of the kinetic data which approaches the rate observed with the 4 beta-deuterated substrate in D2O. The absence of such lags or bursts with the protonated substrate in H2O or with the 4 beta-deuterated substrate in D2O, as well as the detection of buffer catalysis by phosphate at pH 6.8, indicates that one or more intermediates dissociate from the enzyme and partition to substrate 31.6 times faster than to product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A three-dimensional (3-D) structure of human aromatase (CYP19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles of Asp309 and His480 in the aromatization of the steroid A ring.  相似文献   

20.
Stereoselective inhibition of human placental aromatase   总被引:1,自引:0,他引:1  
We have synthesized the (19R)- and (19S)-isomers (2 and 3 respectively) of 10 beta-oxiranylestr-4-ene-3,17-dione. The configurations and conformations of these compounds were established by X-ray crystallographic analysis. Each of these compounds is a powerful competitive inhibitor of human placental microsomal aromatase, and stereoselectivity of inhibition was observed (Ki values for 2 and 3 were 7 and 75 nanomolar, respectively). Spectroscopic studies with purified aromatase indicate that the inhibition process involves reversible binding of oxirane oxygen to the heme iron of the enzyme. The (19R)- and (19S)-10 beta-thiiranes (6 and 7) corresponding to 2 and 3 have been synthesized from the oxiranes by a stereospecific process. The thiiranes are very effective competitive inhibitors of placental aromatase, and show even greater stereoselectivity in binding than the oxiranes (Ki values for 6 and 7 were 1 and 75 nanomolar, respectively). Spectroscopic studies with purified aromatase indicate that the inhibition process involves reversible binding of thiirane sulfur to heme iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号