首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Loss of peroxisome function triggers necrosis   总被引:1,自引:0,他引:1  
Disturbance of peroxisome function can lead to various degenerative diseases during ageing. Here, we show that in yeast deletion of PEX6, encoding a protein involved in a key step of peroxisomal protein import, results in an increased accumulation of reactive oxygen species and an enhanced loss of viability upon acetic acid treatment and during early stationary phase. Cell death of ageing-like yeast cells lacking PEX6 does not depend on the apoptotic key players Yca1p and Aif1p, but instead shows markers of necrosis. Thus, we conclude that loss of peroxisomal function leads to a form of necrotic cell death.  相似文献   

2.
Du L  Su Y  Sun D  Zhu W  Wang J  Zhuang X  Zhou S  Lu Y 《FEMS yeast research》2008,8(4):531-539
Formic acid disrupts mitochondrial electron transport and sequentially causes cell death in mammalian ocular cells by an unidentified molecular mechanism. Here, we show that a low concentration of formic acid induces apoptosis-like cell death in the budding yeast Saccharomyces cerevisiae, with several morphological and biochemical changes that are typical of apoptosis, including chromatin condensation, DNA fragmentation, externalization of phosphatidylserine, reactive oxygen species (ROS) production, loss of mitochondrial membrane potential and mitochondrion destruction. This process may not be dependent on the activation of Yca1p, the yeast caspase counterpart. In addition, the cell death induced by formic acid is associated with ROS burst,while intracellular ROS accumulate more rapidly and to a higher level in the YCA1 disruptant than in the wild-type strain during the progression of cell death. Our data indicate that formic acid induces yeast apoptosis via an Yca1p-independent pathway and it could be used as an extrinsic inducer for identifying the regulators downstream of ROS production in yeast.  相似文献   

3.
During the last years, several reports described an apoptosis-like programmed cell death process in yeast in response to different environmental aggressions. Here, evidence is presented that hyperosmotic stress caused by high glucose or sorbitol concentrations in culture medium induces in Saccharomyces cerevisiae a cell death process accompanied by morphological and biochemical indicators of apoptotic programmed cell death, namely chromatin condensation along the nuclear envelope, mitochondrial swelling and reduction of cristae number, production of reactive oxygen species and DNA strand breaks, with maintenance of plasma membrane integrity. Disruption of AIF1 had no effect on cell survival, but lack of Yca1p drastically reduced metacaspase activation and decreased cell death indicating that this death process was associated to activation of this protease. Supporting the involvement of mitochondria and cytochrome c in caspase activation, the mutant strains cyc1Deltacyc7Delta and cyc3Delta, both lacking mature cytochrome c, displayed a decrease in caspase activation associated to increased cell survival when exposed to hyperosmotic stress. These findings indicate that hyperosmotic stress triggers S. cerevisiae into an apoptosis-like programmed cell death that is mediated by a caspase-dependent mitochondrial pathway partially dependent on cytochrome c.  相似文献   

4.
Inactivation of the budding yeast telomere binding protein Cdc13 results in abnormal telomeres (exposed long G-strands) and activation of the DNA damage checkpoint. In the current study, we show that inactivation of Cdc13p induces apoptotic signals in yeast, as evidenced by caspase activation, increased reactive oxygen species production, and flipping of phosphatidylserine in the cytoplasmic membrane. These apoptotic signals were suppressed in a mitochondrial (rho(o)) mutant. Moreover, mitochondrial proteins (e.g. MTCO3) were identified as multicopy suppressors of cdc13-1, suggesting the involvement of mitochondrial functions in telomere-initiated apoptotic signaling. These telomere-initiated apoptotic signals were also shown to depend on MEC1, but not TEL1, and were antagonized by MRE11. Our results are consistent with a model in which single-stranded G-tails in the cdc13-1 mutant trigger MEC1-dependent apoptotic signaling in yeast.  相似文献   

5.
6.
Kim HJ  Kang SK  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2003,555(2):217-222
Vitamin K-related analogs induce growth inhibition via a cell cycle arrest through cdc25A phosphatase inhibition in various cancer cell lines. We report that 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDN), a naphthoquinone analog, induces mitochondria-dependent apoptosis in human promyelocytic leukemia HL-60 cells. DDN induced cytochrome c release, Bax translocation, cleavage of Bid and Bad, and activation of caspase-3, -8, -9 upon the induction of apoptosis. Cleavage of Bid, the caspase-8 substrate, was inhibited by the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk), whereas cytochrome c release was not affected, suggesting that activation of caspase-8 and subsequent Bid cleavage occur downstream of cytochrome c release. DDN inhibited the activation of Akt detected by decreasing level of phosphorylation. Overexpression of constitutively active Akt protected cells from DDN-induced apoptosis, while dominant negative Akt moderately enhanced cell death. Furthermore, Akt prevented release of cytochrome c and cleavage of Bad in DDN-treated HL-60 cells. Taken together, DDN-induced apoptosis is associated with mitochondrial signaling which involves cytochrome c release via a mechanism inhibited by Akt.  相似文献   

7.
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.  相似文献   

8.
Yeast cells deleted for the SRO7/SOP1 encoded tumor suppressor homologue show increased sensitivity to NaCl stress. On exposure to growth-inhibiting NaCl concentrations, sro7Delta mutants display a rapid loss in viability that is associated with markers of apoptosis: accumulation of reactive oxygen species, DNA breakage, and nuclear fragmentation. Additional deletion of the yeast metacaspase gene YCA1 prevents the primary fast drop in viability and diminishes nuclear fragmentation and DNA breakage. We also observed that NaCl induced loss in viability of wild-type cells is Yca1p dependent. However, a yeast strain deleted for both SRO7 and its homologue SRO77 exhibits NaCl-induced cell death that is independent on YCA1. Likewise, sro77Delta single mutants do not survive better after additional deletion of the YCA1 gene, and both sro77Delta and sro77Deltayca1Delta mutants display apoptotic characteristics when exposed to growth-inhibiting salinity, suggesting that yeast possesses Yca1p-independent pathway(s) for apoptosis-like cell death. The activity of Yca1p increases with increasing NaCl stress and sro7Delta mutants achieve levels that are higher than in wild-type cells. However, mutants lacking SRO77 do not enhance caspase activity when subject to NaCl stress, suggesting that Sro7p and Sro77p exert opposing effects on the cellular activity of Yca1p.  相似文献   

9.
Caspase proteases are a conserved protein family predominantly known for engaging and executing apoptotic cell death. Nevertheless, in higher eukaryotes, caspases also influence a variety of cell behaviors including differentiation, proliferation and growth control. S. cerevisiae expresses a primordial caspase, yca1, and exhibits apoptosis-like death under certain stresses; however, the benefit of a dedicated death program to single cell organisms is controversial. In the absence of a clear rationale to justify the evolutionary retention of a death only pathway, we hypothesize that yca1 also influences non-apoptotic events. We report that genetic ablation and/or catalytic inactivation of Yca1p leads to a longer G1/S transition accompanied by slower growth in fermentation conditions. Downregulation of Yca1p proteolytic activity also results in failure to arrest during nocodazole treatment, indicating that Yca1p participates in the G2/M mitotic checkpoint. 20s proteasome activity and ROS staining of the Delta yca1 strain is indistinguishable from its isogenic control suggesting that putative regulation of the oxidative stress response by Yca1p does not instigate the cell cycle phenotype. Our results demonstrate multiple non-death roles for yca1 in the cell cycle.  相似文献   

10.
Qi H  Chen Y  Fu X  Lin CP  Zheng XF  Liu LF 《PloS one》2008,3(10):e3520
Telomere dysfunction is known to induce growth arrest (senescence) and cell death. However, the regulation of the senescence-death process is poorly understood. Here using a yeast dysfunctional telomere model cdc13-1, which carries a temperature sensitive-mutant telomere binding protein Cdc13p, we demonstrate that inhibition of TOR (Target of Rapamycin), a central regulator of nutrient pathways for cell growth, prevents cell death, but not growth arrest, induced by inactivation of Cdc13-1p. This function of TOR is novel and separable from its G1 inhibition function, and not associated with alterations in the telomere length, the amount of G-tails, and the telomere position effect (TPE) in cdc13-1 cells. Furthermore, antioxidants were also shown to prevent cell death initiated by inactivation of cdc13-1. Moreover, inhibition of TOR was also shown to prevent cell death induced by inactivation of telomerase in an est1 mutant. Interestingly, rapamycin did not prevent cell death induced by DNA damaging agents such as etoposide and UV. In the aggregate, our results suggest that the TOR signaling pathway is specifically involved in the regulation of cell death initiated by telomere dysfunction.  相似文献   

11.
In yeast, apoptotic cell death can be triggered by various factors such as H2O2, cell aging, or acetic acid. Yeast caspase (Yca1p) and cellular reactive oxygen species (ROS) are key regulators of this process. Here, we show that moderate doses of three virally encoded killer toxins (K1, K28, and zygocin) induce an apoptotic yeast cell response, although all three toxins differ significantly in their primary killing mechanisms. In contrast, high toxin concentrations prevent the occurrence of an apoptotic cell response and rather cause necrotic, toxin-specific cell killing. Studies with Deltayca1 and Deltagsh1 deletion mutants indicate that ROS accumulation as well as the presence of yeast caspase 1 is needed for apoptosis in toxin-treated yeast cells. We conclude that in the natural environment of toxin-secreting killer yeasts, where toxin concentration is usually low, induction of apoptosis might play an important role in efficient toxin-mediated cell killing.  相似文献   

12.
Chia-Yi Chien  Jin-Yuan Su 《FEBS letters》2009,583(9):1499-1504
The budding yeast CDC21 gene, which encodes thymidylate synthase, is crucial in the thymidylate biosynthetic pathway. Early studies revealed that high frequency of petites were formed in heat-sensitive cdc21 mutants grown at the permissive temperature. However, the molecular mechanism involved in such petite formation is largely unknown. Here we used a yeast cdc21-1 mutant to demonstrate that the mutant cells accumulated dUMP in the mitochondrial genome. When UNG1 (encoding uracil-DNA glycosylase) was deleted from cdc21-1, we found that the ung1Δ cdc21-1 double mutant reduced frequency of petite formation to the level found in wild-type cells. We propose that the initiation of Ung1p-mediated base excision repair in the uracil-laden mitochondrial genome in a cdc21-1 mutant is responsible for the mitochondrial petite mutations.  相似文献   

13.
The p34cdc2 protein kinase plays a key role in the control of the mitotic cell cycle of fission yeast, being required for both entry into S-phase and for entry into mitosis in the mitotic cell cycle, as well as for the initiation of the second meiotic nuclear division. In recent years, structural and functional homologues of p34cdc2, as well as several of the proteins that interact with and regulate p34cdc2 function in fission yeast, have been identified in a wide range of higher eukaryotic cell types, suggesting that the control mechanisms uncovered in this simple eukaryote are likely to be well conserved across evolution. Here we describe the construction and characterisation of a fission yeast strain in which the endogenous p34cdc2 protein is entirely absent and is replaced by its human functional homologue p34CDC2, We have used this strain to analyse aspects of the function of the human p34CDC2 protein genetically. We show that the function of the human p34CDC2 protein in fission yeast cells is dependent upon the action of the protein tyrosine phosphatase p80cdc25 that it responds to altered levels of both the mitotic inhibitor p1072331 and the p34cdc2-binding protein p13suc1, and is lethal in combination with the mutant B-type cyclin p56cdc13-117. In addition, we demonstrate that the human p34CDC2 protein is proficient for fission yeast meiosis, and examine the behaviour of two mutant p34CDC2 proteins in fission yeast.  相似文献   

14.
Downregulation of cyclin-dependent kinase (Cdk)-mitotic cyclin complexes is important during cell cycle progression and in G(1) arrested cells undergoing differentiation. srw1p, a member of the Fizzy-related protein family in fission yeast, is required for the degradation of cdc13p mitotic cyclin B during G(1) arrest. Here we show that srw1p is not required for the degradation of cdc13p during mitotic exit demonstrating that there are two systems operative at different stages of the cell cycle for cdc13p degradation, and that srw1p is phosphorylated by Cdk-cdc13p only becoming dephosphorylated during G(1) arrest. We propose that this phosphorylation targets srw1p for proteolysis and inhibits its activity to promote cdc13p turnover.  相似文献   

15.
In Saccharomyces cerevisiae, Cdc13p is a single-stranded TG(1-3) DNA binding protein that protects telomeres and maintains telomere length. A mutant allele of CDC13, cdc13-1, causes accumulation of single-stranded TG(1-3) DNA near telomeres along with a G(2)/M cell cycle arrest at non-permissive temperatures. We report here that when the single-stranded TG(1-3) DNA is masked by its binding proteins, such as S. cerevisiae Gbp2p or Schizosaccharomyces pombe Tcg1, the growth arrest phenotype of cdc13-1 is rescued. Mutations on Gbp2p that disrupt its binding to the single-stranded TG(1-3) DNA render the protein unable to complement the defects of cdc13-1. These results indicate that the presence of a single-stranded TG(1-3) tail in cdc13-1 cells serves as the signal for the cell cycle checkpoint. Moreover, the binding activity of Gbp2p to single-stranded TG(1-3) DNA appears to be associated with its ability to restore the telomere-lengthening phenotype in cdc13-1 cells. These results indicate that Gbp2p is involved in modulating telomere length.  相似文献   

16.
Metacaspases in plants, fungi, and protozoa constitute new members of a conserved superfamily of caspase-related proteases. A yeast caspase-1 protein (Yca1p), which is the single metacaspase in Saccharomyces cerevisiae, was shown to mediate apoptosis triggered by oxidative stress or aging in yeast. To examine whether plant metacaspase genes are functionally related to YCA1, we carried out analyses of AtMCP1b and AtMCP2b, representing the two subtypes of the Arabidopsis metacaspase family, utilizing yeast strains with wild-type and the disrupted YCA1 gene (yca1Delta). Inducible expression of AtMCP1b and AtMCP2b significantly promoted yeast apoptosis-like cell death of both the wild-type and yca1Delta strains, relative to the vector controls, during oxidative stress and early aging process. Mutational analysis of the two AtMCPs revealed that their cell-death-inducing activities depend on their catalytic center cysteine residues as well as caspase-like processing. In addition, the phenotype induced by the expression of two AtMCPs was effectively prevented when the cells were pretreated with a broad-spectrum caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone. These results suggest that the two subtypes of Arabidopsis metacaspases are functionally related to Yca1p with caspase-like characteristics. However, we found that bacterial and yeast extracts containing AtMCP1b, AtMCP2b, or Yca1p exhibit arginine/lysine-specific endopeptidase activities but cannot cleave caspase-specific substrates. Together, the results strongly implicate that expression of metacaspases could result in the activation of downstream protease(s) with caspase-like activities that are required to mediate cell death activation via oxidative stress in yeast. Metacaspases from higher plants may serve similar functions.  相似文献   

17.
The accurate segregation of sister chromatids at the metaphase to anaphase transition in Saccharomyces cerevisiae is regulated by the activity of the anaphase-promoting complex or cyclosome (APC/C). In the event of spindle damage or monopolar spindle attachment, the spindle checkpoint is activated and inhibits APC/C activity towards the anaphase inhibitor Pds1p, resulting in a cell cycle arrest at metaphase. We have identified a novel allele of a gene for an APC/C subunit, cdc16-183 , in S. cerevisiae. cdc16-183 mutants arrest at metaphase at 37°C, and are supersensitive to the spindle-damaging agent nocodazole, which activates the spindle checkpoint, at lower temperatures. This supersensitivity to nocodazole cannot be explained by impairment of the spindle checkpoint pathway, as cells respond normally to spindle damage with a stable metaphase arrest and high levels of Pds1p. Despite showing metaphase arrest at G2/M at 37°C, cdc16-183 mutants are able to perform tested G1 functions normally at this temperature. This is the first demonstration that a mutation in a core APC/C subunit can result in a MAD2-dependent arrest at the restrictive temperature. Our results suggest that the cdc16-183 mutant may have a novel APC/C defect(s) that mimics or activates the spindle checkpoint pathway.Communicated by C. P. Hollenberg  相似文献   

18.
19.
20.
The cellular distribution of the fission yeast mitotic cyclin B, p63cdc13, was investigated by a combination of indirect immunofluorescence light microscopy, immunogold electron microscopy, and nuclear isolation and fractionation. Immunofluorescence microscopy of wild-type cells and the cold-sensitive mutant dis2.11 with a monospecific anti-p63cdc13 antiserum was consistent with the association of a major subpopulation of fission yeast M-phase protein kinase with the nucleolus. Immunogold electron microscopy of freeze-substituted wild-type cells identified two nuclear populations of p63cdc13, one associated with the nucleolus, the other with the chromatin domain. To investigate the cell cycle regulation of nuclear labeling, the mutant cdc25.22 was synchronized through mitosis by temperature arrest and release. Immunogold labeling of cells arrested at G2M revealed gold particles present abundantly over the nucleolus and less densely over the chromatin region of the nucleus. Small vesicles around the nucleus were also labeled by anti-p63cdc13, but few gold particles were detected over the cytoplasm. Labeling of all cell compartments declined to zero through mitosis. Cell fractionation confirmed that p63cdc13 was substantially enriched in both isolated nuclei and in a fraction containing small vesicles and organelles. p63cdc13 was not extracted from nuclei by treatment with RNase A, Nonidet P40 (NP-40), Triton X-100, and 0.1 M NaCl, although partial solubilization was observed with DNase I and 1 M NaCl. A known nucleolar protein NOP1, partitioned in a similar manner to p63cdc13, as did p34cdc2, the other subunit of the M-phase protein kinase. We conclude that a major subpopulation of the fission yeast mitotic cyclin B is targeted to structural elements of the nucleus and nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号