首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DBCP was studied for dominant-lethal effects in male and female mice and for total reproductive effects in females. In males it was administered either intraperitoneally or subcutaneously while in females it was given only by the former route. No DBCP-related response was observed in either males or females indicating its ineffectiveness in inducing chromosomal aberrations or cytotoxicity in mouse germ cells. These findings differ markedly from the observations made in rats by other investigators. Thus, the probable existence of a species difference in germ cell response to DBCP has been strengthened by the availability of the present results. It should be noted, however, that only two stocks of male mice have been studied so far for dominant-lethal and germ cell cytotoxicity effects.  相似文献   

2.
Ammonium molybdate cadmium iodide and cadmium chloride have been studied in test for their genotoxic effect on induction of DNA-cellular bonding, extrasynthesis of DNA in spermatozoa of mice as well as in test to estimate a fertility criterion of Drosophila males. Ammonium molybdate, cadmium iodide and cadmium chloride are stated to be able to induce injuries of native DNA in test on induction of DNA-cellular bonding and DNA-sex cells of mice and Drosophila melanogaster in dominant-lethal test and in experiments on estimation of a fertility coefficient of Drosophila males, respectively.  相似文献   

3.
Y Kajiwara  M Inouye 《Teratology》1986,33(2):231-237
This report compares the effects of methylmercuric chloride (MMC) and mercuric chloride (MC) on the development of mouse preimplantation embryos in vivo. Female mice were injected with a single intravenous dose of 0.5-20.0 mg Hg/kg MMC or 0.5-2.5 mg Hg/kg MC on day 0 of gestation. The embryos were recovered by flushing excised oviduct and uterus on day 3.5 of pregnancy, and were examined for abnormalities. In the groups treated with doses of 0.5 and 1.0 mg Hg/kg of both compounds, the rates of abnormal embryos were not significantly different from that in the control group. The 50% effective dose of MMC was twice as great as that of MC. With increasing dose, the difference became more obvious; the 80% effective doses differed by a factor of ten. The body weight of dams decreased in terms of the dose of mercury in MC-treated groups, but did not vary in MMC-treated groups. The sensitive developmental stage for mercury toxicities could not be determined clearly, although the high sensitivity was reported in the blastocyst stage in vitro. The embryos treated in vivo were less sensitive than those reported in vitro.  相似文献   

4.
The effects of cadmium chloride on the volume of the ejaculate, semen density, total number of spermatozoa per ejaculate, viability, grade of motility, and morphological abnormalities were studied in 3-month-old ram-lambs of the Chios breed. Two groups of seven animals each were used. For a period of 7 months, one group was treated with a daily oral dose (3 mg/kg b.w.) of cadmium chloride and the other group received the corresponding volume of doubly distilled water. Blood samples were collected for cadmium determinations, whereas semen was collected weekly. In the cadmium-treated animals, cadmium concentration in the whole blood was increased and the testes weight was lower. The volume of the ejaculate, the semen density and the total number of spermatozoa were significantly reduced by the administration of cadmium chloride. No differences were observed in the viability, the grade motility of spermatozoa, or the percentage of dead and morphologically abnormal spermatozoa between the control and the cadmium-treated animals. Histopathological examination in the cadmium-treated animals revealed the presence of lesions in the Sertoli cells, the seminiferous tubules, the primary and the secondary spermatocytes and the spermatides, whereas in the Leydig cells no significant lesions were evident.  相似文献   

5.
Genetic damage by ethyl methanesulfonate (EMS) in male mice was measured at doses ranging from 50 to 300 mg/kg with dominant-lethal mutations and reciprocal translocations as endpoints. No appreciable increase in dominant-lethal mutations was detected following a dose of 100 mg/kg. Dominant lethals induced by EMS were convincingly detected only after a dose of 150 mg/kg, but in the translocation experiment an increase in the genetic effect was detectable at the 50 mg/kg dose. It is likely that dominant lethals had also been induced at the 50 and 100 mg/kg doses, but were not detected due to the relative insensitivity of the dominant..lethal procedure. Thus, for detection of low levels of EMS-induced chromosome breakage, translocations are a much more reliable endpoint than are dominant-lethal mutations. A procedure for large-scale screening of induced translocations is described.—The dominant-lethal dose-response curve, plotted on the basis of living embryos as a percentage of the control value, is clearly not linear as it is markedly concave downward. Similarly, the translocation dose-response curve showed a more rapid increase in the number of translocations with dose than would be expected on the basis of dose-square kinetics. It is clear for both of these endpoints that the effectiveness of EMS in inducing chromosome breakage is proportionately much lower at low doses.  相似文献   

6.
目的:探讨妊娠期补锌对染汞孕鼠胚胎发育毒性的保护作用.方法:建立孕鼠动物模型,应用不同剂量的氯化甲基汞(0.01、0.05、2.00mg/kg·d)及5.00mg/kg·d硫酸锌于妊娠6~9天连续灌胃.蒸馏水灌胃为对照组,观察孕鼠及胚胎的汞毒性及硫酸锌的影响.应用ICP-MS法测定各组胎鼠脑组织汞含量;Western blot法检测各组胎鼠脑bcl-2蛋白表达情况;TUNEL法检测各组胎鼠脑细胞凋亡情况.结果:各组均未发现死胎、吸收胎及畸形胎;0.01、0.05mg/kg·d氯化甲基汞对孕鼠及胎鼠生长发育没有明显的抑制作用;2.00mg/kg·d氯化甲基汞可以明显抑制孕鼠体重增长及胎鼠身长、体重及尾长的增长(P<0.05),但对孕鼠产仔数、胎窝总重及胎盘总重没有明显的影响,0.05mg/kg·d、2.00mg/kg·d 氯化甲基汞组胎鼠脑组织汞含量较对照组明显升高(P<0.05),bcl一2蛋白表达明显下降(P<0.05),脑细胞凋亡较对照组明显升高(P<0.05);应用硫酸锌预处理后,氯化甲基汞对孕鼠及胚胎的毒性作用明显降低(P<0.05),胎鼠脑组织汞含量较染汞组明显降低(P<0.05),bcl-2蛋白表达明显升高(P<0.05),胎鼠脑细胞凋亡明显降低(P<0.05).结论:孕期补锌可以降低氯化甲基汞对孕鼠胚胎的毒性作用,其机制与锌通过升高bel-2蛋白的表达而抑制细胞凋亡有关.  相似文献   

7.
Pregnancy was blocked by anti-progesterone monoclonal antibody in two inbred (BALB/cJ, CBA/Ca) but to a lesser degree in an F1 hybrid (CBA/Ca male X BALB/cJ female) or an outbred (Tuck's no. 1) stock of mice when antibody was injected intraperitoneally (i.p.) at 32 h post coitum (p.c.) using a dosage of 9.5-10.9 nmol. This different antifertility effect could not be explained solely by altered tubal transport in inbred mice since the rate of transport was slightly accelerated in one stock (BALB/c) but not in another (CBA). In crossbred mice tubal transport was not significantly altered by antibody treatment. At Day 3 (54-58 h p.c.), the majority of embryos in control mice were at the 4-cell and 8-cell to morula stages in inbred and crossbred stock, respectively, but after antibody treatment they were mainly at the 4-cell stage in all 4 stocks. At Day 4 (78-82 h p.c.) the majority of embryos in control females had reached the blastocyst stage in all stocks, whereas after antibody treatment they had reached this stage in crossbred stock and relatively few had progressed so far in inbred stock. The results indicate that there are two events in early gestation which are susceptible to passive immunization with anti-progesterone monoclonal antibody. The first of these occurs during cleavage shortly after the 4-cell stage when embryo development was arrested in two inbred stocks of mice. Antibody effects on cleavage were not direct since embryos cultured in the presence of high concentrations of antibody, or antibody saturated with progesterone, continued to develop in the normal way and formed blastocysts. The second event is the onset of implantation, an effect also influenced by genotype. The decidual cell reaction induced by intraluminal oil injection was blocked by antibody injected at 8 or 32 h p.c. in BALB/c females, but only when injected at 8 h, and not at 32 h p.c., in F1 hybrid females. The results show that there is a greater resistance in two crossbred stocks compared with two inbred stocks to the effects of passive immunization against progesterone in early pregnancy.  相似文献   

8.
The resultant effects of cadmium exposure are seen in almost all the systems of the body, however, this study is designed to quantify its accumulation in tissues of animals exposed to cadmium. The rats were divided into two distinct groups of males and females, which were then divided into three groups, each for the monitoring of exposure. Group 1 served as control male and female and received normal rat chow and tap water. Group 2 males and females were treated with 5 mg/kg body weight of cadmium chloride (Cd) intraperitoneally for eight days while Group 3 males and females rats received 100 ppm of Cd in drinking water for 18 days. The concentrations of cadmium were analyzed in tissues (lung, stomach, kidney, heart, spleen, blood) by AAS. There were significant (P.  相似文献   

9.
Adult male albino rats were orally administered 0, 25, 50 and 100 ppm of lead nitrate, mercuric chloride and cadmium chloride for 60, 120 and 180 days. The plasma sodium levels were decreased in rats exposed to varying doses of lead and mercury up to 180 days, while animals which consumed cadmium chloride showed an increase in sodium levels. In lead and mercury treated animals, plasma potassium levels were increased up to 180 days. The levels were decreased in cadmium exposed rats. These observations suggest that chronic exposure to these heavy metals considerably influences plasma sodium and potassium levels depending on the dose and duration of exposure.  相似文献   

10.
11.
Heavy metal levels of cadmium, copper, mercury, manganese, and zinc were examined in the mummichog, Fundulus heteroditus from industrialized and non-industrialized environments. With one exception, the environment with the highest trace metal in its waters, had the fishes with the highest metal concentration. Except for mercury, the concentration factor varied inversely with the metal concentrations of the fish and water, suggesting a possible regulatory mechanism for metals in the tissues of mummichogs from environments with high metal concentrations. There was an inverse relationship between standard length and concentrations of zinc, manganese, copper and cadmium in whole male and female fishes. The viscera contained significantly greater concentrations of these metals than somatic muscle tissue. There were also significant differences between males and females with respect to whole-body zinc and copper concentrations, but no sex differences for manganese and cadmium.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator (CFTR) or the small conductance cAMP-activated chloride channel encoded by the CFTR gene has been shown to play an important role in the formation of the epididymal fluid microenvironment. Mutation of the gene has led to widespread effects on male reproduction. Like other ion channels, CFTR is amenable to pharmacological intervention. Blocking CFTR in the epididymis could in principle lead to disruption of the epididymal fluid environment. We report for the first time two indazole compounds: lonidamine and 1-(2, 4-dichlorobenzyl)-indazole-3-acrylic acid (AF2785) are potent blockers of CFTR in the epididymis. When added to the external solution under whole-cell patch clamp conditions, AF2785 and lonidamine inhibited the cAMP-activated chloride current in rat epididymal cells with apparent IC(50) values of 170.6 and 631.5 microM, respectively; by comparison the IC(50) value for diphenylamine-2-carboxylate, a well-known chloride channel blocker was 1294 microM. In cultured rat epididymal epithelia mounted in a Ussing chamber, AF2785 and lonidamine inhibited the cAMP-stimulated short-circuit current (a measure of chloride secretion) when added to the apical bathing solution with potency greater than any known chloride channel studied. It is proposed that in view of the important role CFTR plays in male reproduction, further study with these and other new indazole compounds for their CFTR blocking actions can provide a new avenue of research into the development of novel male contraceptives.  相似文献   

13.
The Frog Embryo Teratogenesis Assay-Xenopus (FETAX) is a powerful and flexible bioassay that makes use of the embryos of the anuran amphibian Xenopus laevis. The FETAX can detect xenobiotics that affect embryonic development, when mortality, teratogenicity and growth inhibition are used as endpoints. The FETAX was used to compare the embryotoxic and teratogenic potentials of two chemical species of mercury, inorganic mercury(II) chloride (HgCl2) and organic methylmercury chloride (MeHgCl). A higher toxicity of MeHgCl (the estimated median lethal concentration [LC50] and median teratogenic concentration [TC50] were 0.313microM and 0.236microM, respectively) over HgCl2, with estimated LC50 and TC50 values of 0.601microM and 0.513microM, respectively). On the basis of these results, HgCl2 and MeHgCl can be classified as "slightly teratogenic compounds", as the ratio of LC50/TC50 is less than 1.5. There was a significant deviation from the commonly described monotonic behaviour of the concentration-response curves, suggesting a hormetic effect of both species of mercury. Uptake experiments, followed by neutron activation analysis, showed a higher incorporation of mercury in embryos exposed to MeHgCl compared with those exposed to HgCl2. Interestingly, Hg- exposed embryos showed a higher content of selenium and zinc than did control embryos.  相似文献   

14.
Benzo[a]pyrene was tested for induction of dominant-lethal mutations in germ cells of male mice. Clear-cut dominant-lethal effects were induced in middle and early spermatoza. In contrast to the dominant-lethal effects observed the study showed no detectable increase in hertiable translocations for these stages over the spontaneous level. Thus, the results provide another example of a chemical mutagen that is effective in inducing dominant-lethal mutations but relatively ineffective in inducing heritable translocations in male postmeiotic germ cells.  相似文献   

15.
The present study was designed to investigate the effect of mercuric chloride administration on copper, zinc, and iron concentrations in the liver, kidney, lung, heart, spleen, and muscle of rats. The results showed that after dose and time exposure to mercuric chloride, the concentration of mercury in the six tissues was significantly elevated. Data showed that there were no interaction between mercury and tissue iron. There was a considerable elevation of the content of copper in the kidney and liver. The most significant changes in the copper concentration took place in the kidneys. About a twofold increase in the copper content of the kidney was noted after exposure to mercuric chloride (3 mg and 5 mg/kg). Only slight elevations in the copper content occurred in the liver, especially in high dose and longer exposure time. In the remaining organs, the copper content was not changed significantly (p>0.05). The most significant changes in the zinc concentration took place in liver, kidney, lung, and heart (5 mg/kg). Marked changes in kidney zinc concentrations were observed at any of the specified doses. Zinc concentrations were significantly increased in kidney of rats sacrificed 9–48 h after sc injection of HgCl2 (5 mg/kg); in liver obtained from rats at 18, 24, or 48 h after injection; and in lung after 24 or 48 h of treatment. The heart and spleen zinc concentrations were elevated at 24 and 48 h after injection of HgCl2 (5 mg/kg), respectively. The results of this study implicate that effects on copper and zinc concentrations of the target tissues of mercury may play an important role in the pathogenesis of acute mercuric chloride intoxication.  相似文献   

16.
P P Tam  W K Liu 《Teratology》1985,32(3):453-462
Gonadal development was studied in mouse embryos that were exposed to cadmium during the early organogenesis stages. At 13.5 days, both the male and the female embryos had small genital ridges. Fewer primordial germ cells were found in the male embryos. In both sexes, many primordial germ cells were left outside the genital ridges, presumably as a result of retarded cell migration. In 16.5-day embryos, the size of the testes and ovaries and the number of differentiating germ cells were reduced. Many germ cells degenerated during the differentiation to spermatogonia and meiotic oocytes. The perturbed gonadal development was less likely to be caused primarily by a defective hypothalamopituitary axis but was more a part of the general cadmium-induced damage. The fertility of the male offspring was impaired by the prenatal cadmium insult, but the females were apparently fertile. The epididymal spermatozoa of the cadmium-affected offspring showed a lower fertilizing capacity in vitro. The impaired fertility of the cadmium-affected mice was the result of poor gonadal growth, paucity of germ cells, and defective maturation of the gametes.  相似文献   

17.
The mutagenic effect of cadmium chloride on somatic cells of F1 hybrid mice CBA X C57B1/6J in vivo and on an established line of CHO-ATZ-2 Chinese hamster cells in vitro has been studied. The induction of micronuclei has been demonstrated in mouse marrow cells as well as induction of point mutations at loci controlling the synthesis of hypoxanthine-phosphoribosyltransferase, thymidine kinase, adenine phosphoribosyltransferase and the resistance of Na+/K+ ATPase to ouabain in the cell line CHO-AT-2. A peak of mutagenic activity under the action of subtoxic doses of cadmium chloride has been revealed.  相似文献   

18.
The ability of intraperitoneally administered cadmium chloride (0.42-6.75 mg/kg) to induce genotoxic damage in somatic and germ cells of mice was evaluated using chromosomal aberrations, sister-chromatid exchanges (SCE), micronuclei and sperm-head abnormalities as end-points. A significant increase in the frequency of chromosomal aberrations and SCEs was observed in almost all treated series when compared to the negative control. Micronucleus formation in polychromatic erythrocytes was not affected significantly except at the highest concentration used (6.75 mg/kg). Significant differences were observed in the frequency of sperm with abnormal head morphology at all concentrations tested except the lowest one. The clastogenic effects of cadmium chloride in both somatic and germinal cells are found to depend directly on the concentrations used.  相似文献   

19.
The isolated hepatocytes were incubated in the medium, containing cadmium chloride or hydrogen peroxide. Influence of the latter on the intensity of lipid peroxidation and contents of some lipids fractions, as well as viability of hepatocytes in these conditions has been studied. It is shown that under such cultivation conditions the activation of lipid peroxidation in the hepatocytes takes place. Its activation in presence of cadmium chloride was one of the factors of the membranes damage. The changes in the content of some fractions of lipids were similar both under the incubations of the cells with cadmium chloride and hydrogen peroxide. This allows one to suppose that cadmium chloride causes changes in the lipid composition of membranes as a result of intensification of lipid peroxidation.  相似文献   

20.
Synopsis Newly-hatched embryos of Oreochromis mossambicus were reared in freshwater and treated with 0 (control), 50 (low level) or 200 (high level) ppb cadmium for 4 days. Changes in the numbers and dimensions of chloride cell apical crypts on the skin of the free embryos were examined daily using scanning electron microscopy. The apical crypts of the chloride cells were rarely observed on the skin of the embryo trunk, and unevenly distributed on the surface of the yolksac. Two days after hatching, the chloride cells of the free embryos exposed to 50 ppb Cd were more active than those of the other two groups. Compared with the control group, the maximum dimensions of the developing apical crypts were stimulated by 50 ppb Cd and inhibited by 200 ppb Cd. The results indicated that the development of chloride cells in tilapia free embryos was provoked by low level Cd exposure and stunted by high level Cd exposure, suggesting the existence of structure/function relationships in which the activation of chloride cells may be related to the ionoregulatory mechanism in adaptation to Cd exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号