首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
Increased numbers of mast cells are affiliated with a broad spectrum of pathologic skin conditions, including ulcers, atopic dermatitis, neurofibromatosis, hemangiomas, keloids, and hypertrophic scars. It has been proposed that mast cells play a primary pathophysiologic role in these disorders and that their presence represents not merely a secondary event. While investigating their recent hypothesis that positively charged cross-linked diethylaminoethyl dextran (CLDD) beads potentiate cutaneous wound healing, the authors serendipitously observed increased numbers of mast cells in the deep dermis of wounds treated with CLDD beads. The authors propose that mast cells may play an important role in the modulation of healing seen with CLDD beads. Incisional wounds were studied in 30 Sprague-Dawley rats partitioned into two groups that were killed 7 or 14 days after wounding. The wounds were treated with positively, negatively, or neutrally charged CLDD beads. Physiologic saline served as a control. At the designated times after incisional wounding, biopsy specimens were tested for wound breaking strength or processed for histologic testing, fixed in 4% paraformaldehyde, and stained with Giemsa and Goldner-Masson trichrome. Mast cells were counted under light microscopy in a blinded fashion and were expressed as the number of cells per millimeter squared. Significant increases in the number of mast cells were observed in the deep dermis of incisional wounds after implantation with positively or negatively charged CLDD beads. In contrast, neutrally charged beads had no effect on mast cell numbers. At 7 days, the incisions treated with positively charged beads averaged 2.1 times more mast cells compared with those treated with physiologic saline or neutrally charged beads, whereas the incisions treated with negatively charged beads displayed 3.2 times more mast cells. By day 14, the incisions treated with positively charged beads averaged 2.5 times more mast cells than those wounds treated with saline or neutrally charged beads; the incisions treated with negatively charged CLDD beads had 3.4 times more mast cells. The 7-day tensiometric data indicated that wounds treated with negatively charged CLDD beads had increased breaking strength compared with wounds treated with neutrally charged beads or saline (1.8 and 1.7 times, respectively; p = 0.01 and p = 0.02). Wounds treated with positively charged beads also showed increased breaking strength compared with wounds treated with neutrally charged beads or saline (1.5 and 1.4 times greater); however, this did not reach statistical significance. There was no apparent difference in breaking strength when neutrally charged beads were compared with those treated with saline. At 14 days, there was no statistically significant difference in wound breaking strength between different treatments. These findings are clinically germane to the assessment of proposed therapeutic applications of CLDD beads for a variety of impaired wound-healing states. Furthermore, if increased mast cell populations are intimately linked to hypertrophic scar and keloid formation, the results of the authors' study suggest that CLDD bead therapy of cutaneous wounds may lead to pathologic wound healing in humans.  相似文献   

2.
The purpose of this study was to explore the possibility of inhibiting wound scarring by blocking TGFbeta signaling of wound cells by means of a gene therapy approach. Normal dermal fibroblasts were infected in vitro either with recombinant adenovirus encoding a truncated TGFbeta receptor II (Ad-tTGF-betaRII) or with [beta]-galactosidase adenovirus (Ad-beta-gal). TGF-beta1 gene expression in infected fibroblasts was analyzed by Northern blot. In vivo, 1x10(9) plaque-forming units of Ad-tTGF-betaRII were intradermally injected into the dorsal skin of 10-day-old newborn Sprague-Dawley rats (n = 10). For gene therapy, 1x10(9) plaque-forming units of Ad-tTGF-betaRII viruses were injected intradermally at the right side dorsal skin of another set of same aged Sprague-Dawley rats as the experimental group (n = 15). In the control group, 1x10(9) plaque-forming units of Ad-beta-gal (n = 11) or the same volume of saline (n = 4) was injected at the left side skin of the same rats. A 5-mm-long full-thickness incisional wound was created at the injection sites of each rat 2 days after injection. Wound tissues were harvested at day 3 (n = 2), day 7 (n = 2), and day 14 (n = 11) after wounding for histological analysis. Scar area of wound tissues harvested at day 14 was quantitatively analyzed. The results showed that TGF-beta1 gene expression was markedly down-regulated in Ad-tTGF-betaRII infected fibroblasts compared with Ad-beta-gal infected cells. In vivo, adenovirus-mediated transgene expression in rat skin reached a peak level at day 2 after injection and the expression gradually decreased afterward. Inhibited inflammatory reaction was also observed in the treated wounds with significantly reduced inflammatory cells (p < 0.05). Moreover, in all 11 rats, the experimental wound at day 14 had much less scarring than its control wound of the same rat, with an average of 49 percent reduction of the scar area (p < 0.05). Furthermore, more panniculus muscles were repaired in the experimental wounds (nine of 11) than in the control wounds (two of 11) (p < 0.05). These results indicate that gene therapy by targeting wound TGF-beta can effectively inhibit wound scarring and may potentially be applied to clinical scar treatment.  相似文献   

3.
Effect of sodium diphenylhydantoin on skin wound healing in rats   总被引:2,自引:0,他引:2  
This study evaluated the effect of phenytoin (sodium diphenylhydantoin) on skin wound healing in a rat model. The study was divided into two parts. In part I, 20 mul of phenytoin (10 mg/ml) was subcutaneously injected into the 3-cm dorsal full-thickness incisional wounds of 14 rats on postoperative days 0, 3, and 6. Twelve rats that received saline injections were used as the controls. The skin samples were harvested and tested for tensile strength and histology. An additional 12 rats with the same incisional wounds were tested for chemokine gene expressions. In part II, 20 mul of phenytoin (10 mg/ml) was applied topically once a day on a 4 x 4 cm area of the open dorsal wounds of 10 rats. Saline was applied to the wounds of the 10 control group rats. The wounds were measured weekly. The results showed that the average tensile strength of the phenytoin-treated wound was 0.49 +/- 0.08 MPa compared with the control group at 0.02 +/- 0.01 MPa (p < 0.05). The density ratio of chemokine monocyte chemotactic protein (MCP-1) to beta-actin in the phenytoin-treated group was also significantly higher than in the control group (p < 0.05). Histologic analysis of the phenytoin group showed a large amount of fibroblast proliferation, collagen synthesis, and neovascularization. Phenytoin-treated wounds were also smaller at 1 to 6 weeks postoperatively than the control group wounds. The authors conclude that the administration of phenytoin can promote wound healing and significantly increase MCP-1 expression. Phenytoin-treated wounds showed significant increase in collagen deposition and neovascularization, which resulted in an increased wound tensile strength and accelerated healing of both open and closed wounds.  相似文献   

4.
Contraction of skin excision wounds is affected by age and the presence of peripheral nerves. The present study examined relationships between peripheral innervation, wound contractile cells, and rate of wound closure to determine whether these are altered during development. Full-thickness 4-mm-diameter circular flaps were excised from the interscapular skin of rats on postnatal day (PND) 5, PND 12, or PND 60. Wounds of PND 5 and PND 12 rats contracted 45% between post-wound days (WD) 3 and 5 and more slowly thereafter, with a scar 9-14% of the original wound size by WD 21. In contrast, PND 60 wounds contracted only 22% between WD 3 and 5, and the residual scar at WD 21 was 40% of the original wound size. In younger rats, alpha-smooth muscle actin-immunoreactive myofibroblasts first appeared on WD 2 and attained maximum density at WD 5. Innervation, as assessed by protein gene product 9.5 immunoreactivity, appeared by WD 3 and increased rapidly through WD 7 in younger rats. In PND 60 wounds, myofibroblasts did not appear until WD 5 and did not attain a maximum until day 10. Nerve ingrowth was not significant until WD 10 and was depressed relative to younger rats throughout the healing phase. Wound nerves were predominantly immunoreactive to calcitonin gene-related peptide, and synaptophysin-immunostaining revealed close associations between varicosities and myofibroblasts. These findings suggest that wound myofibroblasts may be a target of peripheral nerves, and delayed wound closure in mature rats is associated with deficiencies in both myofibroblasts and innervation.  相似文献   

5.
Hepatocyte growth factor (HGF) and macrophage-stimulating protein (MSP) are structurally related molecules that stimulate epithelial cell proliferation and migration. MSP also acts directly as a chemoattractant for resident macrophages. These activities are integral to the wound repair processes of inflammation, epithelialization and tissue remodelling. To begin to examine the involvement of HGF and MSP in healing of cutaneous wounds we have mapped the temporal expression of these two molecules and their receptors, MET and RON respectively, in adult rat excisional wounds. Four 2x2-cm full-thickness excisional wounds were created on the dorsum of 18 rats, and biopsies were taken through the wounds at 3, 5, 7, 14, 21, and 28 days postwounding. These biopsies were analyzed using immunofluorescent staining and in situ hybridization (ISH). The number of cells staining positively for HGF and MET significantly increased in response to wounding. HGF staining and mRNA peaked at 7 days postwounding whereas MET was upregulated earlier, peaking after 3 days. Both HGF and MET protein were observed in fibroblasts of the dermis and in the newly forming granulation tissue. ISH studies also revealed that fibroblasts at the wound edges and within the newly forming granulation tissue also expressed HGF and c-met mRNA. Immunofluorescent staining revealed both MSP and RON within the wound, with maximum staining occurring between 7 and 21 days for both the ligand and receptor. In addition, MSP co-localized with a small subset of ED1-positive cells (monocytes). In contrast, ED2-positive cells (macrophages) did not co-localize with MSP. Thus, increased expression of HGF, MSP and their receptors MET and RON respectively was observed in response to wounding. Furthermore, MSP co-localization with a subset of monocytes may confirm a role for MSP in the activation of mature macrophages, which may be important in tissue remodelling.  相似文献   

6.
Fetal wounds pass from scarless repair to healing with scar formation during gestation. This transition depends on both the size of the wound and the gestational age of the fetus. This study defines the transition period in the fetal rat model and provides new insight into scarless collagen wound architecture by using confocal microscopy. A total of 16 pregnant Sprague-Dawley rats were operated on. Open full-thickness wounds, 2 mm in diameter, were created on fetal rats at gestational ages 14.5 days (E14; n = 10), 16.5 days (E16; n = 42), and 18.5 days (E18; n = 42) (term = 21.5 days). Wounds were harvested at 24 (n = 18 per gestational age) and 72 hours (n = 24 per gestational age). Skin at identical gestational ages to wound harvest was used for controls. The wounds were fixed and stained with hematoxylin and eosin, antibody to type I collagen, and Sirius red for confocal microscopic evaluation. No E14 rat fetuses survived to wound harvest. Wounds created on E16 fetal rats healed completely and without scarring. E16 fetal rat hair follicle formation and collagen architecture was similar to that of normal, nonwounded skin. Wounds created on E18 fetal rats demonstrated slower healing; only 50 percent were completely healed at 72 hours compared with 100 percent of the E16 fetal rat wounds at 72 hours. Furthermore, the E18 wounds healed with collagen scar formation and without hair follicle formation. Confocal microscopy demonstrated that the collagen fibers were thin and arranged in a wispy pattern in E16 fetal rat wounds and in nonwounded dermis. E18 fetal rat wounds had thickened collagen fibers with large interfiber distances. Two-millimeter excisional E16 fetal rat wounds heal without scar formation and with regeneration of normal dermal and epidermal appendage architecture. E18 fetal rat wounds heal in a pattern similar to that of adult cutaneous wounds, with scar formation and absence of epidermal appendages. Confocal microscopy more clearly defined the dermal architecture in normal skin, scarless wounds, and scars. These data further define the transition period in the fetal rat wound model, which promises to be an effective system for the study of in vivo scarless wound healing.  相似文献   

7.
We investigated the wound healing efficacy of the Foeniculum vulgare compounds, fenchone and limonene, using an excisional cutaneous wound model in rats. An excision wound was made on the back of the rat and fenchone and limonene were applied topically to the wounds once daily, separately or together, for 10 days. Tissue sections from the wounds were evaluated for histopathology. The healing potential was assessed by comparison to an untreated control group and an olive oil treated sham group. We scored wound healing based on epidermal regeneration, granulation tissue thickness and angiogenesis. After day 6, wound contraction with limonene was significantly better than for the control group. Ten days after treatment, a significant increase was observed in wound contraction and re-epithelialization in both fenchone and limonene oil treated groups compared to the sham group. Groups treated with fenchone and with fenchone + limonene scored significantly higher than the control group, but the difference was not statistically significant compared to the olive oil treated group. Our findings support the beneficial effects of fenchone and limonene for augmenting wound healing. The anti-inflammatory and antimicrobial activities of fenchone and limonene oil increased collagen synthesis and decreased the number of inflammatory cells during wound healing and may be useful for treating skin wounds.  相似文献   

8.
Recent investigations have reported contradictory results on the influence of low-power laser light on wound healing. Low-power laser with a power output of 250 mW and an emitted laser light of 670 nm have been insufficiently investigated to date. The effect of a 250-mW/670-nm laser light on the healing of burning wounds in rats was investigated. Thirty rats were burned on both flanks. One wound was irradiated with 670-nm laser light (2 J/cm2), whereas the other side remained untreated. Macroscopic evaluation of the wounds was performed daily; 10, 20, and 30 days after burning, 10 rats were killed and the wounds histologically evaluated. Neither macroscopic nor histologic examination of the irradiated wound showed accelerated wound healing when compared with control wounds. In the present study, irradiation of burns with a 250-mW/670-nm laser light produced no beneficial effects on wound-healing processes.  相似文献   

9.
The role of sensory nociceptor nerves in cutaneous wound healing was investigated following full-thickness 4-mm diameter dorsal cutaneous excision wounding of rats on postnatal day 12. In rats with intact innervation, wounds at 3 days contained large numbers of TUNEL- and BRDU-labeled nuclei, consistent with inflammatory cell death and granulation cell proliferation. Wound area and volume decreased through 11 days in concert with a transient appearance of alpha-smooth muscle actin-immunoreactive myofibroblasts, declining rates of cell division, and increased occurrence of apoptotic cells. Sensory denervation by capsaicin injections on postnatal days 2 and 9 reduced calcitonin gene-related peptide-immunoreactive wound innervation persistently by up to 43%. This was associated with increased wound surface area and volume, and delays in scab loss and re-epithelialization. Relative to control wounds, granulation tissue showed increased myofibroblast content at 5-7 days. Capsaicin-treated rats had more BRDU-labeled cells, including myofibroblasts, through day 7. Numbers of TUNEL apoptotic cells per unit area of tissue section were reduced by denervation in both early and late stages of healing. We conclude that partial loss of sensory innervation impairs cutaneous wound healing in developing rats, as manifested by delayed re-epithelialization and failure of the wound area to decrease normally through at least 21 days. This is associated with an abnormally enlarged wound tissue volume resulting from increased granulation cell proliferation without proportionate increases in apoptosis. These findings suggest that nociceptor innervation plays a critical role in wound healing by regulating wound cellularity.  相似文献   

10.
Svensjö T  Pomahac B  Yao F  Slama J  Eriksson E 《Plastic and reconstructive surgery》2000,106(3):602-12; discussion 613-4
Full-thickness skin wounds are preferably allowed to heal under controlled hydration dressings such as hydrocolloids. It was hypothesized that a wet (liquid) environment rather than a dry or moist one would accelerate the wound healing process. We compared skin repair by secondary intention in full-thickness skin wounds in wet (saline), moist (hydrocolloid), and dry (gauze) conditions in an established porcine wound healing model. The study included three animals with a total of 70 wounds layered in a standardized fashion on the back of young Yorkshire pigs. Twelve days after wounding, 0 percent of dry, 20 percent of moist, and 86 percent of saline-treated wounds were completely reepithelialized (p values = 0.0046 and 0.027 for saline wounds compared with dry and moist wounds, respectively). The accelerated healing was caused at least in part by faster contraction in wet wounds (p value < 0.005 compared with that of other groups 9 and 12 days after wounding). Development of granulation tissue was faster in moist conditions than it was for dry and wet wounds. The thickness and number of cell layers of the newly formed epidermis were greater in dry and wet wounds than in moist ones. It was concluded that these full-thickness porcine skin wounds healed faster in a wet environment than in a moist one. Dry wounds healed more slowly than moist wounds. The basic mechanisms of skin wound repair were influenced by the treatment modality as demonstrated by the observed differences in granulation tissue formation, reepithelialization, and rate of wound contraction.  相似文献   

11.
Effects of topical application of Bis[benzyl N'-(indol-3-ylmethylene)-hydrazinecarbodithioato]-zinc(II) (BHCZ) on wound healing and histology of healed wound were assessed. Sprague Dawley rats were experimentally induced wound in the posterior neck area. Tween 20 (0.2 ml of 10%) was applied to rats in Group 1 (negative control). Intrasite gel (0.2 ml) was applied topically to rats in Group 2 as reference. BHCZ at the concentrations 0.2 ml of 25, 50 and 100 mg/ml were applied to Group 3, 4 and 5, respectively. Wound dressed with BHCZ significantly healed earlier than those treated with 10% Tween 20. Also wound dressed with 100 mg/ml BHCZ accelerated the rate of wound healing compared to those dressed with intrasite gel and, 25 mg/ml and 50 mg/ml BHCZ. Histological analysis of healed wound with BHCZ showed comparatively less scar width at wound enclosure and the healed wound contained less macrophages and large amount of collagen with angiogenesis compared to wounds dressed with 10% Tween 20. Results of this study showed that wounds dressed with 100 mg/ml of BHCZ significantly enhanced acceleration of the rate of wound healing enclosure, and histology of healed wounds showed comparatively less macrophages and more collagen with angiogenesis.  相似文献   

12.
In this study, we investigated the role of nerve growth factor (NGF)-incorporated collagen on wound healing in rats. Full-thickness excision wounds were made on the back of female rats weighing about 150-160 g. Topical application of NGF-incorporated collagen, at a concentration of 1 microg/1.2 mg collagen/cm(2), once a day, for 10 days resulted in complete healing of wounds on the 15th day. The concentrations of collagen, hexosamine and uronic acid in the granulation tissue were determined. The NGF-incorporated collagen-treated rats required shorter duration for the healing with an increased rate of wound contraction. Histological and electron microscopical evaluations were also performed, which reveal the activation of fibroblasts and endoplasmic reticulum and therefore increased level of collagen synthesis due to NGF application. These results clearly indicate that the topical application of NGF-incorporated collagen enhanced the rate of healing of excision wounds.  相似文献   

13.
The effect of disodium cromoglycate on skin wound healing and collagen formation in the wounds was studied. Disodium cromoglycate (a mast cell stabilizer) administered to the rats in a dose of 2 mg/animal was found to retard wound healing and markedly increased wound surface in all examined days (3rd, 5th, 7th, 10th, 14th day of healing). The mast cell stabilizer injected directly into wounds decreased collagen content, especially on 10th and 14th day of the healing process.  相似文献   

14.
Current wound-healing models do not fully duplicate the in vivo human environment. The feasibility of grafting human full-thickness foreskin onto nude rats, as a model of acute wound healing, was evaluated. Incisions were then created on the grafted skin, and wound healing was evaluated. Full-thickness human skin was obtained after elective circumcision and was grafted subcutaneously onto the dorsal thorax of nude rats. At 10 days after transplantation, graft beds were judged for graft viability, on the basis of gross appearance, texture, and adherence. Full-thickness wounds were then made in the foreskin. Graft wounds were left to close by secondary intention. The wounds were allowed to heal for 7 days. Wounds were excised and tested for breaking stress. Histological evaluations included proliferating cell nuclear antigen, factor VIII, hematoxylin and eosin, and trichrome staining. Twenty grafts were performed, with 100 percent viability. Upon incision, all grafts bled freely, indicating a rich vascular supply and tissue viability. Graft viability was confirmed by the presence of proliferating cells in the parabasal stratum of the epithelium. Furthermore, there was evidence of angiogenesis, as confirmed by staining for factor VIII. Breaking stress was evaluated by tensiometry, 7 days after wounding. Histological evaluations revealed viable grafts and active wound-healing events. Full-thickness human skin can be successfully transplanted onto nude rats, providing a larger, more physiological model of human wound healing. This model closely parallels the in vivo situation, providing a promising model for study of the complex biological processes of acute human wound healing, in a reproducible manner.  相似文献   

15.
Sericin has good hydrophilic properties, compatibility, and biodegradation, it can be used as a wound-healing agent. We evaluated the effects of sericin on wound healing and wound size reduction using rats by generating two full-thickness skin wounds on the dorsum. Group 1 animals were treated with Betadine® on left-side (control) wounds and, with 8% sericin cream on right-side (treated) wounds. Group 2, cream base (formula control) and 8% sericin cream (treated) were topically applied to left-, and right-side wounds respectively. Sericin-treated wounds had much smaller inflammatory reactions, and wound-size reduction was much greater than in the control throughout the inspection period. Mean time in days for 90% healing from sericin-treated wounds was also much less than for cream base-treated wounds. Histological examination after 15 d of treatment with 8% sericin cream revealed complete healing, no ulceration, and an increase in collagen as compared to cream base-treated wounds, which showed some ulceration and acute inflammatory exudative materials.  相似文献   

16.
Sericin has good hydrophilic properties, compatibility, and biodegradation, it can be used as a wound-healing agent. We evaluated the effects of sericin on wound healing and wound size reduction using rats by generating two full-thickness skin wounds on the dorsum. Group 1 animals were treated with Betadine on left-side (control) wounds and, with 8% sericin cream on right-side (treated) wounds. Group 2, cream base (formula control) and 8% sericin cream (treated) were topically applied to left-, and right-side wounds respectively. Sericin-treated wounds had much smaller inflammatory reactions, and wound-size reduction was much greater than in the control throughout the inspection period. Mean time in days for 90% healing from sericin-treated wounds was also much less than for cream base-treated wounds. Histological examination after 15 d of treatment with 8% sericin cream revealed complete healing, no ulceration, and an increase in collagen as compared to cream base-treated wounds, which showed some ulceration and acute inflammatory exudative materials.  相似文献   

17.
Time-course changes in the specific activity of superoxide dismutase (SOD) and hydroperoxides were studied in granulation tissue and blood serum of 230 Wistar male rats weighing 200-210 g with simulated aseptic and infected surface wounds before and 1-10, 12, 15 days after the operation. Differences in the level range of SOD and hydroperoxides specific activity were demonstrated in tissues and sera. The dependence of hydroperoxide levels on the wound stage, as well as the dependence of SOD specific activity time-course on the character and severity of wound were stated. The allowances should be made of those differences in the shifts observed in anti- and pro-oxidative systems during wound healing when corrective therapeutic measures are considered.  相似文献   

18.
Two models of wound repair compared the effect of defined, recombinant growth factors on the rate of wound repair in both normal and streptozotocin-induced diabetic rats: subcutaneous implantation of polyvinyl alcohol sponges and incisional wounding. Transverse incisional wounds were made on the dorsal surface of rats and closed with steel sutures. Three days postwounding the rats received a single injection of either transforming growth factor-beta or vehicle alone directly into the wound site. Animals were sacrificed 7, 14, and 21 days postwounding, and fresh and formalin-fixed wound tensile strength were measured. Diabetic rats had expected defects in wound repair, including decreased granulation tissue and reduced amounts of collagen, protein, and DNA. Fresh tensile strength of the diabetic incisions was 53% of normal on Day 7 (p < or = .01) and 29% of normal on Day 21. Fixed tensile strength was 41% of normal on Day 7 (p < or = .01) and fell to 78% of normal by Day 21 (p < or = .01), suggesting that collagen concentrations of diabetic wounds increased towards normal but did not undergo maturation. TGF beta produced a moderate increase in tensile strength of fresh and fixed wounds of diabetic rats, but not to the levels of wounds in untreated normal rats. Sponges fill with granulation tissue, their reproducible rate of organization being measured by histological and biochemical methods. A single injection into sponges 3 days postimplantation of basic fibroblast growth factor, transforming growth factor-beta, or vehicle only, was evaluated at 7 and 9 days postimplantation. In the sponge model, bFGF and TGF beta were each able to induce significant increases in the accumulation of granulation tissue in both diabetic and normal rats. TGF beta increased the collagen content of sponges by 136% in sponges from diabetic animals (p < or = .001), thereby raising the collagen content to that of normal control wounds, while stimulating a 49% (p < or = .02) increase in sponges from normal animals on Day 9. By contrast, the response to bFGF was predominantly an increase in the protein and DNA content of the sponges. These results emphasize the differential effects of the two cytokines in accelerating healing under conditions of defective wound repair.  相似文献   

19.

Background

Wound healing involves the integration of complex biological processes. Several studies examined numerous approaches to enhance wound healing and to minimize its related morbidity. Both chitosan and mesenchymal stem cells (MSCs) were used in treating skin wounds. The aim of the current work was to compare MSCs versus chitosan in wound healing, evaluate the most efficient route of administration of MSCs, either intradermal or systemic injection, and elicit the mechanisms inducing epidermal and dermal cell regeneration using histological, immunohistochemical and fluorescent techniques.

Material and Methods

Forty adult male Sprague Dawley albino rats were divided into four equal groups (ten rats in each group): control group (Group I); full thickness surgical skin wound model, Group II: Wound and chitosan gel. Group III: Wound treated with systemic injection of MSCs and Group IV: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 3, 5, 10 and 15 for gross morphological evaluation and on day 10 and 15 for histological, immunohistochemical and fluorescent studies.

Results

Chitosan was proved to promote wound healing more than the control group but none of their wound reached complete closure. Better and faster healing of wounds in MSCs treated groups were manifested more than the control or chitosan treated groups. It was found that the intradermal route of administration of stem cells enhanced the rate of healing of skin wounds better than the systemic administration to the extent that, by the end of the fifteenth day of the experiment, the wounds were completely healed in all rats of this group. Histologically, the wound areas of group IV were hardly demarcated from the adjacent normal skin and showed complete regeneration of the epidermis, dermis, hypodermis and underlying muscle fibers. Collagen fibers were arranged in many directions, with significant increase in their area percent, surrounding fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas more than in other groups.

Conclusion

MSCs enhanced the healing process of wound closure more than chitosan gel treatment. Furthermore, MSCs injected intradermally, were more efficient in accelerating wound healing than any other mode of treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号