首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotic cells, the phospholipid cardiolipin (CL) is primarily found in the inner mitochondrial membrane. Saccharomyces cerevisiae mutants, unable to synthesize CL because of a null allele of the CRD1 gene (encodes CL synthase), have been reported with different phenotypes. Some mutants, when grown on a nonfermentable carbon source at elevated temperatures, exhibit mitochondrial DNA instability, loss of viability, and significant defects in several functions that rely on the mitochondrial energy transducing system (ETS). These mutants also lack the immediate precursor to CL, phosphatidylglycerol (PG), when grown on glucose as a carbon source. Other mutants show reduced growth efficiency on a nonfermentable carbon source but much milder phenotypes associated with growth at elevated temperatures and increased levels of PG when grown on glucose. We present evidence that mitochondrial DNA instability, loss of viability, and defects in the ETS exhibited at elevated temperatures by some mutants are caused by the reduced expression of the PET56 gene in the presence of the his3 Delta 200 allele and not the lack of CL alone. We also found that PG is present and elevated in all crd1 Delta strains when grown on glucose. A supermolecular complex between complex III and complex IV of the mitochondrial ETS detected in wild type cells was missing in all of the above crd1 Delta cells. The level of components of the ETS was also reduced in crd1 Delta cells grown at elevated temperatures because of reduced gene expression and not reduced stability. These results suggest that all phenotypes reported for cells carrying the his3 Delta 200 allele and lacking CL should be re-evaluated.  相似文献   

2.
Selection for mutants which release glucose repression of the CYB2 gene was used to identify genes which regulate repression of mitochondrial biogenesis. We have identified two of these as the previously described GRR1/CAT80 and ROX3 genes. Mutations in these genes not only release glucose repression of CYB2 but also generally release respiration of the mutants from glucose repression. In addition, both mutants are partially defective in CYB2 expression when grown on nonfermentable carbon sources, indicating a positive regulatory role as well. ROX3 was cloned by complementation of a glucose-inducible flocculating phenotype of an amber mutant and has been mapped as a new leftmost marker on chromosome 2. The ROX3 mutant has only a modest defect in glucose repression of GAL1 but is substantially compromised in galactose induction of GAL1 expression. This mutant also has increased SUC2 expression on nonrepressing carbon sources. We have also characterized the regulation of CYB2 in strains carrying null mutation in two other glucose repression genes, HXK2 and SSN6, and show that HXK2 is a negative regulator of CYB2, whereas SSN6 appears to be a positive effector of CYB2 expression.  相似文献   

3.
We report here that glucose, as a carbon source, and pyruvate are required for the phenotypic expression of cytoplasmically transmitted chloramphenicol-resistance (CAP-R) mutations, recovery of CAP-R mutants, and continuous growth in the presence of oligomycin or antimycin. We assume that glucose supplies additional energy when mitochondrial respiration is diminished and that pyruvate provides intermediates when the Krebs cycle is inhibited. Thus, the requirement for pyruvate is fully satisfied by an exogenous source of purines, and partially by alpha-ketoglutarate or a pyrimidine source. Based upon these findings, we have obtained two types of mutations affecting mitochondrial function--oligomycin resistance and pyruvate-independent expression of chloramphenicol resistance. Both are cytoplasmically transmitted and provide new markers for a genetic analysis of mitochondrial biogenesis.  相似文献   

4.
On the basis of allyalcohol resistance, Saccharomyces cerevisiae mutanta were isolated that were deficient in alcohol dehydrogenase (ADH). The mutants were divided into three classes by their different ADH isozyme pattern obtained after starch-gel electrophoresis: adc mutants that did not produce the constitutive ADH, adr mutants from which the glucose repressible enzyme (ADHII) was absent, and adm mutants deficient in ADH activity associated with the mitochondria.Genetic analysis showed that two genes control synthesis of the glucose repressible enzyme ADHII, one gene the constitutive ADHI and a fourth nuclear gene the mitochondrial ADH. None of these four genes showed any linkage.The various mutant types did not show drastic effects on yeast growth on media containing glucose or ethanol as sole carbon sources.  相似文献   

5.
6.
Three glycerol-nonutilizing mutants deficient in the mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (EC 1.1.99.5) were isolated from inl(ts) derivatives of Neurospora crassa following inositolless death at elevated temperatures on minimal glycerol medium. These mutants failed to grow on glycerol as a sole carbon source, but could grow on acetate, glucose, or mannitol media and were female fertile in genetic crosses, thereby distinguishing them from the previously reported polyol-protoperithecial defective Neurospora mutants. In addition, these glp mutants exhibited a distinct morphological alteration during vegetative growth on sucrose slants and colonial growth on sorbose-containing semicomplete medium. The glp-2 locus was assigned a location between arg-5 and nuc-2 on chromosome IIR on the basis of two-factor crosses and by duplication coverage by insertional translocation ALS176, but not NM177. All mutations were allelic as judged from the absence of both complementation in forced heterokaryons and genetic recombination among glp-2 mutations. The reversion frequency of all three mutations was less than 10(10), indicating probable deletions in these strains. No G3P dehydrogenase activity could be detected in either cytosolic or mitochondrial extracts from mutant strains grown on glycerol, glucose, or galactose media. These results suggest that the glp-2 locus may be the structural gene for both the cytosolic and mitochondrial forms of G3P dehydrogenase or for a cytosolic precursor of the mitochondrial G3P dehydrogenase. The defect is specific for the G3P dehydrogenase since normal activities of the mitochondrial cytochrome oxidase and succinate dehydrogenase and the cytosolic glycerol dehydrogenase and dihydroxyacetone phosphate reductase are detected in mutant extracts. During attempted growth of glp-2 mutants on glycerol media, there was an accumulation of G3P in culture filtrates, a reduction in the mycelial growth rate, and a decreased level of glycerokinase induction.  相似文献   

7.
Branched-chain amino acids (BCAAs) are key substrates in the formation of fusel alcohols, important flavour components in fermented foods. The first step in the catabolic BCAA degradation is a transaminase step, catalyzed by a branched-chain amino acid transaminase (BCAAT). Saccharomyces cerevisiae possesses a mitochondrial and a cytosolic BCAAT, Bat1p and Bat2p, respectively. In order to study the impact of the BCAATs on fusel alcohol production derived from the BCAA metabolism, S. cerevisiae BCAAT-deletion mutants were constructed. The BCAA l-leucine was exogenously supplied during cultivations with mutants of S. cerevisiae. BAT1 deletion is not essential for fusel alcohol production, neither under glucose nor under ethanol growth conditions. The 3-methyl-1-butanol production rate of bat1Delta-cells on ethanol was decreased in comparison with that of wild-type cells, but the cells were still able to produce 3-methyl-1-butanol. However, drastic effects in fusel alcohol production were obtained in cells lacking BAT2. Although the constructed bat2Delta-single deletion strain and the bat1Deltabat2Delta-double deletion strain were still able to produce 3-methyl-1-butanol when grown on glucose, they were incapable of producing any 3-methyl-1-butanol when ethanol was the sole carbon source available. In the circumstances used, gene expression analysis revealed a strong upregulation of BAT2 gene activity in the wild type, when cells grew on ethanol as carbon source. Apparently, the carbon metabolism is able to influence the expression of BCAATs and interferes with the nitrogen metabolism. Furthermore, analysis of gene expression profiles shows that the expression of genes coding for other transaminases present in S. cerevisiae was influenced by the deletion of one or both BCAATs. Several transaminases were upregulated when a BCAAT was deleted. Strikingly, none of the known transaminases was significantly upregulated when BAT2 was deleted. Therefore we conclude that the expression of BAT2 is essential for 3-methyl-1-butanol formation on the non-fermentable carbon source, ethanol.  相似文献   

8.
Y. J. Lee  R. B. Wickner 《Genetics》1992,132(1):87-96
The MAK10 gene is necessary for the propagation of the L-A dsRNA virus of the yeast Saccharomyces cerevisiae. We have isolated MAK10 from selected phage lambda genomic DNA clones that map near MAK10. This gene encodes a 733-amino acid protein with several regions of similarity to T cell receptor alpha-subunit V (variable) regions. We show that MAK10 is essential for optimal growth on nonfermentable carbon sources independent of its effect on L-A. Although loss of L-A by mak10-1 mutants is partially suppressed by loss of the mitochondrial genome, no such suppression of a mak10::URA3 mutation was observed. Using MAK10-lacZ fusions we show that MAK10 is expressed at a very low level and that it is glucose repressed. The highest levels of expression were seen in tup1 and cyc8 mutants, known to be defective in glucose repression. These results suggest that the mitochondrial genome and L-A dsRNA compete for the MAK10 protein.  相似文献   

9.
10.
11.
A Kluyveromyces lactis strain, harbouring KlADH3 as the unique alcohol dehydrogenase (ADH) gene, was used in a genetic screen on allyl alcohol to isolate mutants deregulated in the expression of this gene. Here we report the characterization of some mutants that lacked or had highly reduced amounts of KlAdh3p activity; in addition, these mutants showed alterations in glucose metabolism, reduced respiration and reduced cytochrome content. Our results confirm that the KlAdh3p activity contributes to the reoxidation of cytosolic NAD(P)H feeding the respiratory chain through KlNdi1p, the mitochondrial internal transdehydrogenase. The low levels of KlAdh3p in two of the mutants were associated with mutations in KlSDH1, one of the genes of complex II, suggesting signalling between the respiratory chain and expression of the KlADH3 gene.  相似文献   

12.
In Bacillus subtilis, carbon catabolite repression (CCR) is mediated by the pleiotropic repressor CcpA and by ATP-dependent phosphorylation of the HPr protein of the phosphotransferase system (PTS). In this study, we attempted to identify novel genes that are involved in the signal transduction pathway that ultimately results in CCR in the presence of repressing carbon sources such as glucose. Seven mutants resistant to glucose repression of the levanase operon were isolated and characterized. All mutations were trans-acting and pleiotropic as determined by analyzing CCR of beta-xylosidase and of the sacPA and bglPH operon. Moreover, all mutations specifically affected repression exerted by glucose but not by other sugars. The mutations were mapped to three different loci on the genetic map, ptsG, glcR, and pgi. These three genes encode proteins involved in glucose metabolism. A novel repressor gene, glcR (ywpI), defined by two mutations, was studied in more detail. The glcR mutants exhibit loss of glucose repression of catabolic operons, a deficiency in glucose transport, and absence of expression of the ptsG gene. The mutant GlcR proteins act as super-repressors of ptsG expression.  相似文献   

13.
Production of NADP and NADPH depends on activity of NAD and NADH kinases. Here we characterized all combinations of mutants in yeast NAD and NADH kinases to determine their physiological roles. We constructed a diploid strain heterozygous for disruption of POS5, encoding mitochondrial NADH kinase, UTR1, cytosolic NAD kinase, and YEF1, a UTR1-homologous gene we characterized as encoding a low specific activity cytosolic NAD kinase. pos5 utr1 is a synthetic lethal combination rescued by plasmid-borne copies of the POS5 or UTR1 genes or by YEF1 driven by the ADH1 promoter. Respiratory-deficient and oxidative damage-sensitive defects in pos5 mutants were not made more deleterious by yef1 deletion, and a quantitative growth phenotype of pos5 and its arginine auxotrophy were repaired by plasmid-borne POS5 but not UTR1 or ADH1-driven YEF1. utr1 haploids have a slow growth phenotype on glucose not exacerbated by yef1 deletion but reversed by either plasmid-borne UTR1 or ADH1-driven YEF1. The defect in fermentative growth of utr1 mutants renders POS5 but not POS5-dependent mitochondrial genome maintenance essential because rho-utr1 derivatives are viable. Purified Yef1 has similar nucleoside triphosphate specificity but substantially lower specific activity and less discrimination in favor of NAD versus NADH phosphorylation than Utr1. Low expression and low intrinsic NAD kinase activity of Yef1 and the lack of phenotype associated with yef1 suggest that Utr1 and Pos5 are responsible for essentially all NAD/NADH kinase activity in vivo. The data are compatible with a model in which there is no exchange of NADP, NADPH, or cytoplasmic NAD/NADH kinase between nucleocytoplasmic and mitochondrial compartments, but the cytoplasm is exposed to mitochondrial NAD/NADH kinase during the transit of the molecule.  相似文献   

14.
Cardiolipin (CL) is a unique dimeric phospholipid localized primarily in the mitochondrial membrane. In eukaryotes, the enzyme CL synthase catalyses the synthesis of CL from two lipid substrates, CDP-diacylglycerol and phosphatidylglycerol. In earlier studies, we reported the purification of CL synthase from Saccharomyces cerevisiae and the cloning of the gene CRD1 (previously called CLS1 ) that encodes the enzyme. Because CL is an important component of the mitochondrial membrane, knowledge of its regulation will provide insight into the biogenesis of this organelle. To understand how CL synthesis is regulated, we analysed CRD1 expression by Northern blot analysis of RNA extracted from cells under a variety of growth conditions. CRD1 expression is regulated by mitochondrial development factors. CRD1 levels were 7- to 10-fold greater in stationary than in logarithmic growth phase, and threefold greater in wild-type than in ρ0 mutants. Expression was somewhat elevated during growth in glycerol/ethanol versus glucose media. In contrast, CRD1 expression was not regulated by the phospholipid precursors inositol and choline, and was not altered in the regulatory mutants ino2 , ino4 and opi1 . Mutations in cytochrome oxidase assembly, which led to reduced Crd1p enzyme activity, did not affect CRD1 expression. The crd1 null mutant makes a truncated CRD1 message. Although the null mutant can grow on both fermentable and non-fermentable carbon sources at lower temperatures, it cannot form colonies at 37°C. In conclusion, CRD1 expression is controlled by factors affecting mitochondrial development, but not by the phospholipid precursors inositol and choline. Expression of CRD1 is essential for growth at elevated temperatures, suggesting that either CL or Crd1p is required for an essential cellular function.  相似文献   

15.
16.
Genes for the enzymes that metabolize galactose in Saccharomyces cerevisiae are strongly induced by galactose and tightly repressed by glucose. Because glucose also represses mitochondrial activity, we examined if derepression of the GAL1 galactokinase gene requires physiologically active mitochondria. The effect of mitochondria on the expression of GAL1 was analyzed by a novel approach in which the activity of the organelles was altered by functional expression of URF13, a mitochondrial protein unique to the Texas-type cytoplasmic male sterility phenotype in maize. Mitochondrial targeting and functional expression of the URF13 protein in yeast result in a decrease of the mitochondrial membrane potential similar to those observed in cells treated with mitochondrial inhibitors such as antimycin A or sodium azide. Activation of URF13 in galactose-induced cells results in the inhibition of GAL1 expression in the absence of repressing concentrations of glucose. Our data reveal the existence of a regulatory pathway that connects the derepression of the GAL1 gene with mitochondrial activity.  相似文献   

17.
Phosphatidylglycerolphosphate synthase (PGPS; CDP-diacylglycerol glycerol 3-phosphate 3-phosphatidyltransferase; EC 2.7.8.5) catalyzes the first step in the synthesis of cardiolipin, an acidic phospholipid found in the mitochondrial inner membrane. In the yeast Saccharomyces cerevisiae, PGPS expression is coordinately regulated with general phospholipid synthesis and is repressed when cells are grown in the presence of the phospholipid precursor inositol (M. L. Greenberg, S. Hubbell, and C. Lam, Mol. Cell. Biol. 8:4773-4779, 1988). In this study, we examined the regulation of PGPS in growth conditions affecting mitochondrial development (carbon source, growth stage, and oxygen availability) and in strains with genetic lesions affecting mitochondrial function. PGPS derepressed two- to threefold when cells were grown in a nonfermentable carbon source (glycerol-ethanol), and this derepression was independent of the presence of inositol. PGPS derepressed two- to fourfold as cells entered the stationary phase of growth. Stationary-phase derepression occurred in both glucose- and glycerol-ethanol-grown cells and was slightly greater in cells grown in the presence of inositol and choline. PGPS expression in mitochondria was not affected when cells were grown in the absence of oxygen. In mutants lacking mitochondrial DNA [( rho0] mutants), PGPS activity was 30 to 70% less than in isogenic [rho+] strains. PGPS activity in [rho0] strains was subject to inositol-mediated repression. PGPS activity in [rho0] cell extracts was derepressed twofold as the [rho0] cells entered the stationary phase of growth. No growth phase derepression was observed in mitochondrial extracts of the [rho0] cells. Relative cardiolipin content increased in glycerol-ethanol-grown cells but was not affected by growth stage or by growth in the presence of the phospholipid precursors inositol and choline. These results demonstrate that (i) PGPS expression is regulated by factors affecting mitochondrial development; (ii) regulation of PGPS by these factors is independent of cross-pathway control; and (iii) PGPS expression is never fully repressed, even during anaerobic growth.  相似文献   

18.
Current data concerning the crucial role of inorganic polyphosphates (polyP) in mitochondrial functions and dysfunctions in yeast and animal cells are reviewed. Biopolymers with short chain length (∼15 phosphate residues) were found in the mitochondria of Saccharomyces cerevisiae. They comprised 7–10% of the total polyP content of the cell. The polyP are located in the membranes and intermembrane space of mitochondria. The mitochondrial membranes possess polyP/Ca2+/polyhydroxybutyrate complexes. PolyP accumulation is typical of promitochondria but not of functionally active mitochondria. Yeast mitochondria possess two exopolyphosphatases splitting Pi from the end of the polyP chain. One of them, encoded by the PPX1 gene, is located in the matrix; the other one, encoded by the PPN1 gene, is membrane-bound. Formation of well-developed mitochondria in the cells of S. cerevisiae after glucose depletion is accompanied by decrease in the polyP level and the chain length. In PPN1 mutants, the polyP chain length increased under glucose consumption, and the formation of well-developed mitochondria was blocked. These mutants were defective in respiration functions and consumption of oxidizable carbon sources such as lactate and ethanol. Since polyP is a compound with high-energy bonds, its metabolism vitally depends on the cell bioenergetics. The maximal level of short-chain acid-soluble polyP was observed in S. cerevisiae under consumption of glucose, while the long-chain polyP prevailed under ethanol consumption. In insects, polyP in the mitochondria change drastically during ontogenetic development, indicating involvement of the polymers in the regulation of mitochondrial metabolism during ontogenesis. In human cell lines, specific reduction of mitochondrial polyP under expression of yeast exopolyphosphatase PPX1 significantly modulates mitochondrial bioenergetics and transport.  相似文献   

19.
Mutants deficient in sporulation were isolated and characterized with respect to antibiotic and protease activity, transformability, growth, and sporulation. All but two mutants could grow on minimal medium containing glucose. The inability of most mutants to incorporate uracil into trichloroacetic acid-precipitable material (ribonucleic acid) during the developmental period, and their response to a number of carbon sources, were used to characterize their biochemical blocks. Reproducible measurements of these responses were possible when the pH of the culture, which changed during growth and greatly influenced the rate of uracil uptake, was adjusted to 6.5. By their response to ribose and glutamate, the sporulation mutants could then be divided into four groups. All mutants of the first three groups produced antibiotic activity against Staphylococcus aureus, whereas all mutants, except one, of the fourth group produced none or very little of this activity. Mutants which did not respond to glutamate belonged to the first three groups; they also grew slowly or not at all on glutamate as sole carbon source. One of these mutants lacked succinic dehydrogenase activity. The results indicate that most of our sporulation mutants are unable to produce or utilize a natural carbon precursor, which is normally used as a slowly available carbon and energy source via the Krebs cycle when other carbon sources are used up. It enters the Krebs cycle as a precursor of alpha-ketoglutarate, probably via acetylcoenzyme A. All mutants of group four are blocked in this pathway before alpha-ketoglutarate.  相似文献   

20.
Regulation of the activity of the mitochondrial enzyme phosphatidylserine decarboxylase (PSD) was measured in vitro by using membrane preparations from wild-type and mutant strains of Saccharomyces cerevisiae. PSD specific activity was not affected by carbon source, and on all carbon sources, the highest specific activity was observed in cells entering the stationary phase of growth. However, PSD activity was found to be regulated in response to soluble precursors of phospholipid biosynthesis. PSD specific activity was reduced to about 63% of the level observed in unsupplemented wild-type cells when the cells were grown in the presence of 75 microM inositol. The presence of 1 mM choline alone had no repressing effect, but the presence of 1 mM choline and 75 microM inositol together led to further repression to a level of about 28% of the derepressed activity. Regulatory mutations known to affect regulation or expression of genes encoding phospholipid-synthesizing enzymes also affected PSD specific activity. opi1 mutants, which are constitutive for a number of phospholipid-biosynthetic enzymes, were found to have high, constitutive levels of PSD. Likewise, in ino2 or ino4 regulatory mutants, PSD activity was found to be at the fully repressed level regardless of growth condition. Regulation of PSD activity was also affected in several structural-gene mutants under conditions of impaired phosphatidylcholine biosynthesis. Together, these data strongly suggest that PSD expression is controlled by the mechanism of general control of phospholipid biosynthesis that regulates many enzymes of phospholipid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号